Кальций метал. Химические и физические свойства кальция, его взаимодействие с водой. История и происхождение названия

12.12.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Кальций (Calcium), Ca, химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый легкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, из которых наиболее распространен 40 Ca (96, 97%).

Соединения Ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозем и кремнезем - вещества сложные. В 1808 году Г. Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с оксидом ртути, приготовил амальгаму Ca, а отогнав из нее ртуть, получил металл, названный "Кальций" (от лат. calx, род. падеж calcis - известь).

Распространение Кальция в природе. По распространенности в земной коре Ca занимает 5-е место (после О, Si, Al и Fe); содержание 2,96% по массе. Он энергично мигрирует и накапливается в различных геохимических системах, образуя 385 минералов (4-е место по числу минералов). В мантии Земли Ca мало и, вероятно, еще меньше в земном ядре (в железных метеоритах 0,02%). Ca преобладает в нижней части земной коры, накапливаясь в основные породах; большая часть Ca заключена в полевом шпате - анортите Ca; содержание в основных породах 6,72%, в кислых (граниты и другие) 1,58% . В биосфере происходит исключительно резкая дифференциация Ca, связанная главным образом с "карбонатным равновесием": при взаимодействии углекислого газа с карбонатом СаСО 3 образуется растворимый бикарбонат Ca(HCO 3) 2: CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2 = Са 2+ + 2HCO 3- . Эта реакция обратима и является основой перераспределения Ca. При высоком содержании CO 2 в водах Ca находится в растворе, а при низком содержании CO 2 в осадок выпадает минерал кальцит CaCO 3 , образуя мощные залежи известняка, мела, мрамора.

Огромную роль в истории Ca играет и биогенная миграция. В живом веществе из элементов-металлов Ca - главный. Известны организмы, которые содержат более 10% Ca (больше углерода), строящие свой скелет из соединений Ca, главным образом из СаСО 3 (известковые водоросли, многие моллюски, иглокожие, кораллы, корненожки и т. д.). С захоронением скелетов мор. животных и растений связано накопление колоссальных масс водорослевых, коралловых и прочих известняков, которые, погружаясь в земные глубины и минерализуясь, превращаются в различные виды мрамора.

Огромные территории с влажным климатом (лесные зоны, тундра) характеризуются дефицитом Ca - здесь он легко выщелачивается из почв. С этим связано низкое плодородие почв, низкая продуктивность домашних животных, их малые размеры, нередко болезни скелета. Поэтому большое значение имеет известкование почв, подкормка домашних животных и птиц и т. д. Напротив, в сухом климате СаСО 3 труднорастворим, поэтому ландшафты степей и пустынь богаты Ca. В солончаках и соленых озерах часто накапливается гипс CaSO 4 ·2H 2 O.

Реки приносят в океан много Ca, но он не задерживается в океанической воде (среднее содержание 0,04%), а концентрируется в скелетах организмов и после их гибели осаждается на дно преимущественно в форме CaCO 3 . Известковые илы широко распространены на дне всех океанов на глубинах не более 4000 м (на больших глубинах происходит растворение СаСО 3 , организмы там нередко испытывают дефицит Ca).

Важную роль в миграции Ca играют подземные воды. В известняковых массивах они местами энергично выщелачивают CaCO 3 , с чем связано развитие карста, образование пещер, сталактитов и сталагмитов. Помимо кальцита, в морях прошлых геологических эпох было широко распространено отложение фосфатов Ca (например, месторождения фосфоритов Каратау в Казахстане), доломита CaCO 3 ·MgCO 3 , а в лагунах при испарении - гипса.

В ходе геологической истории росло биогенное карбонатообразование, а химическое осаждение кальцита уменьшалось. В докембрийских морях (свыше 600 млн. лет назад) не было животных с известковым скелетом; они приобрели широкое распространение начиная с кембрия (кораллы, губки и т. д.). Это связывают с высоким содержанием CO 2 в атмосфере докембрия.

Физические свойства Кальция. Кристаллическая решетка α-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca 2+ , 1,04Å. Плотность 1,54 г/см 3 (20 °C). Выше 464 °C устойчива гексагональная β-форма. t пл 851 °C, t кип 1482 °C; температурный коэффициент линейного расширения 22·10 -6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м·К) или 0,3 кал/(см·сек·°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20 °C 4,6·10 -8 ом·м или 4,6·10 -6 ом·см; температурный коэффициент электросопротивления 4,57·10 -3 (20 °C). Модуль упругости 26 Гн/м 2 (2600 кгс/мм 2); предел прочности при растяжении 60 Мн/м 2 (6 кгс/мм 2); предел упругости 4 Мн/м 2 (0,4 кгс/мм 2), предел текучести 38 Мн/м 2 (3,8 кгс/мм 2); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м 2 (20-30 кгс/мм 2). Кальций достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.

Химические свойства Кальция. Конфигурация внешней электронной оболочки атома Ca 4s 2 , в соответствии с чем Ca в соединениях 2-валентен. Химически Ca очень активен. При обычной температуре Ca легко взаимодействует с кислородом и влагой воздуха, поэтому его хранят в герметически закрытых сосудах или под минеральным маслом. При нагревании на воздухе или в кислороде воспламеняется, давая основной оксид CaO. Известны также пероксиды Ca - CaO 2 и CaO 4 . С холодной водой Ca взаимодействует сначала быстро, затем реакция замедляется вследствие образования пленки Ca(OH) 2 . Ca энергично взаимодействует с горячей водой и кислотами, выделяя H 2 (кроме концентрированной HNO 3). С фтором реагирует на холоду, а с хлором и бромом - выше 400 °C, давая соответственно CaF 2 , CaCl 2 и CaBr 2 . Эти галогениды в расплавленном состоянии образуют с Ca так называемых субсоединения - CaF, CaCl, в которых Ca формально одновалентен. При нагревании Ca с серой получается сульфид кальция CaS, последний присоединяет серу, образуя полисульфиды (CaS 2 , CaS 4 и другие). Взаимодействуя с сухим водородом при 300-400 °C, Ca образует гидрид CaH 2 - ионное соединение, в котором водород является анионом. При 500 °C Ca и азот дают нитрид Ca 3 N 2 ; взаимодействие Ca с аммиаком на холоду приводит к комплексному аммиакату Ca 6 . При нагревании без доступа воздуха с графитом, кремнием или фосфором Ca дает соответственно карбид кальция CaC 2 , силициды Ca 2 Si, CaSi, CaSi 2 и фосфид Ca 3 P 2 . Ca образует интерметаллические соединения с Al, Ag, Au, Cu, Li, Mg, Pb, Sn и другие.

Получение Кальция. В промышленности Ca получают двумя способами: 1) нагреванием брикетированной смеси CaO и порошка Al при 1200 °C в вакууме 0,01-0,02 мм рт. ст.; выделяющиеся по реакции: 6CaO + 2 Al = 3CaO·Al 2 O 3 + 3Ca пары Ca конденсируются на холодной поверхности; 2) электролизом расплава CaCl 2 и KCl с жидким медно-кальциевым катодом приготовляют сплав Cu - Ca (65% Ca), из которого Ca отгоняют при температуре 950-1000 °C в вакууме 0,1-0,001 мм рт. ст.

Применение Кальция. В виде чистого металла Ca применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов из их соединений. Его используют также для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Большое применение в технике получили антифрикционные материалы системы Pb-Na-Ca, а также сплавы Pb-Ca, служащие для изготовления оболочки электрич. кабелей. Сплав Ca-Si-Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей.

Кальций в организме. Ca - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишенной Ca. У некоторых организмов содержание Ca достигает 38%; у человека - 1,4-2%. Клетки растительных и животных организмов нуждаются в строго определенных соотношениях ионов Ca 2+ , Na + и K + во внеклеточных средах. Растения получают Ca из почвы. По их отношению к Ca растения делят на кальцефилов и кальцефобов. Животные получают Ca с пищей и водой. Ca необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активации ряда ферментов. Ионы Ca 2+ передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в ее свертывании. В клетках почти весь Ca находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганических фосфатами и органических кислотами. В плазме крови человека и высших животных только 20-40% Ca может быть связано с белками. У животных, обладающих скелетом, до 97-99% всего Ca используется в качестве строительного материала: у беспозвоночных в основном в виде CaCO 3 (раковины моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают Ca перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях.

Содержание Ca в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желез. Важнейшую роль в этих процессах играет витамин D. Всасывание Ca происходит в переднем отделе тонкого кишечника. Усвоение Ca ухудшается при снижении кислотности в кишечнике и зависит от соотношения Ca, P и жира в пище. Оптимальные соотношения Са / Р в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище P или щавелевой кислоты всасывание Ca ухудшается. Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са / жир в пище человека 0,04-0,08 г Ca на 1 г жира. Выделение Ca происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Ca с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит, у взрослых животных - изменение состава и строения скелета (остеомаляция).

Кальций (calcium), ca, химический элемент ii группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый лёгкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40 ca, 42 ca, 43 ca, 44 ca, 46 ca и 48 ca, из которых наиболее распространён 40 ca (96, 97%).

Соединения ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 в. химики считали известь простым телом. В 1789 А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём - вещества сложные. В 1808 Г. Дэви , подвергая электролизу с ртутным катодом смесь влажной гашёной извести с окисью ртути, приготовил амальгаму ca, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. calx, родительный падеж calcis - известь).

Распространение в природе. По распространённости в земной коре ca занимает 5-е место (после О, si, al и fe); содержание 2,96% по массе. Он энергично мигрирует и накапливается в различных геохимических системах, образуя 385 минералов (4-е место по числу минералов). В мантии Земли ca мало и, вероятно, ещё меньше в земном ядре (в железных метеоритах 0,02%). ca преобладает в нижней части земной коры, накапливаясь в основных породах; большая часть ca заключена в полевом шпате - анортите ca ; содержание в основных породах 6,72%, в кислых (граниты и др.) 1,58%. В биосфере происходит исключительно резкая дифференциация ca, связанная главным образом с «карбонатным равновесием»: при взаимодействии углекислого газа с карбонатом caco 3 образуется растворимый бикарбонат Са (НСО 3) 2:

СаСО 3 + h 2 o + co 2 <=> Са (НСО 3) 2 <=> ca 2+ + 2hco 3 -.

Эта реакция обратима и является основой перераспределения ca. При высоком содержании co 2 в водах ca находится в растворе, а при низком содержании co 2 в осадок выпадает минерал кальцит СаСОз, образуя мощные залежи известняка, мела, мрамора.

Огромную роль в истории ca играет и биогенная миграция. В живом веществе из элементов - металлов ca - главный. Известны организмы, которые содержат более 10% ca (больше углерода), строящие свой скелет из соединений ca, главным образом из СаСО 3 (известковые водоросли, многие моллюски, иглокожие, кораллы, корненожки и т.д.). С захоронением скелетов морских животных и растений связано накопление колоссальных масс водорослевых, коралловых и прочих известняков, которые, погружаясь в земные глубины и минерализуясь, превращаются в различные виды мрамора.

Огромные территории с влажным климатом (лесные зоны, тундра) характеризуются дефицитом ca - здесь он легко выщелачивается из почв. С этим связано низкое плодородие почв, низкая продуктивность домашних животных, их малые размеры, нередко болезни скелета. Поэтому большое значение имеет известкование почв, подкормка домашних животных и птиц и т.д. Напротив, в сухом климате СаСО 3 трудно растворим, поэтому ландшафты степей и пустынь богаты ca. В солончаках и солёных озёрах часто накапливается гипс caso 4 · 2h 2 o.

Реки приносят в океан много ca, но он не задерживается в океанической воде (ср. содержание 0,04%), а концентрируется в скелетах организмов и после их гибели осаждается на дно преимущественно в форме СаСО 3 . Известковые илы широко распространены на дне всех океанов на глубинах не более 4000 м (на больших глубинах происходит растворение СаСО 3 , организмы там нередко испытывают дефицит ca).

Важную роль в миграции ca играют подземные воды. В известняковых массивах они местами энергично выщелачивают СаСО 3 , с чем связано развитие карста , образование пещер, сталактитов и сталагмитов. Помимо кальцита, в морях прошлых геологических эпох было широко распространено отложение фосфатов ca (например, месторождения фосфоритов Каратау в Казахстане), доломита СаСО 3 · mgco 3 , а в лагунах при испарении -гипса.

В ходе геологической истории росло биогенное карбонатообразование, а химическое осаждение кальцита уменьшалось. В докембрийских морях (свыше 600 млн. лет назад) не было животных с известковым скелетом; они приобрели широкое распространение начиная с кембрия (кораллы, губки и т.д.). Это связывают с высоким содержанием co 2 в атмосфере докембрия.

Физические и химические свойства. Кристаллическая решётка a -формы ca (устойчивой при обычной температуре) гранецентрированная кубическая а = 5,56 å. Атомный радиус 1,97 å, ионный радиус ca 2+ , 1,04 å. Плотность 1,54 г/см 3 (20 °С). Выше 464 °c устойчива гексагональная b -форма. t пл 851°c, t kип 1482 ° c; температурный коэффициент линейного расширения 22 ? 10 -6 (0-300 ° c); теплопроводность при 20 °c 125,6 Вт/(м ? К) или 0,3 кал/ (см ? сек ° С); удельная теплоёмкость (0-100 °С) 623,9 дж/(кг ? К ) или 0,149 кал/ (г ? °c); удельное электросопротивление при 20°c 4,6 ? 10 -8 ом ? м или 4,6 ? 10 -6 ом ? см ; температурный коэффициент электросопротивления 4,57 ? 10 -3 (20 °c). Модуль упругости 26 Гн/м 2 (2600 кгс/мм 2 ); предел прочности при растяжении 60 Мн/м 2 (6 кгс/мм 2 ); предел упругости 4 Мн/м 2 (0,4 кгс/мм 2 ), предел текучести 38 Мн/м 2 (3,8 кгс/мм 2 ); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м 2 (20-30 кгс/мм 2 ). К. достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.

Конфигурация внешней электронной оболочки атома ca 4s 2 , в соответствии с чем ca в соединениях 2-валентен. Химически ca очень активен. При обычной температуре ca легко взаимодействует с кислородом и влагой воздуха, поэтому его хранят в герметически закрытых сосудах или под минеральным маслом. При нагревании на воздухе или в кислороде воспламеняется, давая основной окисел cao. Известны также перекиси ca - cao 2 и СаО 4 . С холодной водой ca взаимодействует сначала быстро, затем реакция замедляется вследствие образования пленки ca (oh) 2. ca энергично взаимодействует с горячей водой и кислотами, выделяя h 2 (кроме концентрированной hno 3). С фтором реагирует на холоду, а с хлором и бромом - выше 400 °С, давая соответственно caf 2 , cacl 2 и cabr 2. Эти галогениды в расплавленном состоянии образуют с ca так называемого субсоединения - caf, caci, в которых ca формально одновалентен. При нагревании ca c серой получается кальция сульфид cas, последний присоединяет серу, образуя полисульфиды (cas 2 , cas 4 и др.). Взаимодействуя с сухим водородом при 300-400 °c ca образует гидрид cah 2 - ионное соединение, в котором водород является анионом. При 500 °c ca и азот дают нитрид ca 3 n 2 ; взаимодействие ca с аммиаком на холоду приводит к комплексному аммиакату ca 6 . При нагревании без доступа воздуха с графитом, кремнием или фосфором ca дает соответственно карбид кальция cac 2 , силициды casi 2 и фосфид ca 3 p 2 . ca образует интерметаллические соединения с al, ag, au, cu, li, mg, pb, sn и др.

Получение и применение. В промышленности ca получают двумя способами: 1) нагреванием брикетированной смеси cao и порошка al при 1200 °С в вакууме 0,01-0,02 мм рт. ст .; выделяющиеся по реакции: 6cao +2al = 3 СаО? l 2 o 3 + 3Са пары ca конденсируются на холодной поверхности; 2) электролизом расплава cacl 2 и kcl с жидким медно-кальциевым катодом приготовляют сплав cu - ca (65% ca), из которого ca отгоняют при температуре 950-1000 °С в вакууме 0,1-0,001 мм рт. ст .

В виде чистого металла ca применяют как восстановитель u, th, cr, v, zr, cs, rb и некоторых редкоземельных металлов из их соединений. Его используют также для раскисления сталей, бронз и др. сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Большое применение в технике получили антифрикционные материалы системы pb-na-ca, а также сплавы pb-ca, служащие для изготовления оболочки электрических кабелей. Сплав ca-si-ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей. О применении соединений К. см. в соответствующих статьях.

А. Я. Фишер, А. И. Перельман.

Кальций в организме . ca - один из биогенных элементов , необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой ca у некоторых организмов содержание ca достигает 38%; у человека - 1,4-2%. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов ca 2+ , na + и К + во внеклеточных средах. Растения получают ca из почвы. По их отношению к ca растения делят на кальцефилов и кальцефобов . Животные получают ca с пищей и водой. ca необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и др. животных, активации ряда ферментов. Ионы ca 2+ передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свертывании. В клетках почти весь ca находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20-40% ca может быть связано с белками. У животных, обладающих скелетом, до 97-99% всего ca используется в качестве строительного материала: у беспозвоночных в основном в виде caco 3 (раковины моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают ca перед линькой для построения нового скелета или для обеспечения жизненных функции в неблагоприятных условиях.

Содержание ca в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желёз. Важнейшую роль в этих процессах играет витамин d. Всасывание ca происходит в переднем отделе тонкого кишечника. Усвоение ca ухудшается при снижении кислотности в кишечнике и зависит от соотношения ca, Р и жира в пище. Оптимальные соотношения ca/p в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище Р или щавелевой кислоты всасывание ca ухудшается, Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са/жир в пище человека 0,04-0,08 г ca на 1 г жира. Выделение ca происходит главным образом через кишечник. Млекопитающие в период лактации теряют много ca с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит , у взрослых животных - изменение состава и строения скелета (остеомаляция ).

И. А. Скульский.

В медицине применение препаратов ca устраняет нарушения, связанные с недостатком ионов ca 2+ в организме (при тетании, спазмофилии, рахите). Препараты ca снижают повышенную чувствительность к аллергенам и используются для лечения аллергических заболеваний (сывороточная болезнь, крапивница, ангионевротический отёк, сенная лихорадкаи др.). Препараты ca уменьшают повышенную проницаемость сосудов и оказывают противовоспалительное действие. Их применяют при геморрагическом васкулите, лучевой болезни, воспалительных и экссудативных процессах (пневмония, плеврит, эндометрит и др.) и некоторых кожных заболеваниях. Назначают как кровоостанавливающие средства, для улучшения деятельности сердечной мышцы и усиления действия препаратов наперстянки; как слабые мочегонные и как противоядия при отравлении солями магния. Вместе с др. средствами препараты ca применяют для стимулирования родовой деятельности. Хлористый кальций вводят через рот и внутривенно. Оссокальцинол (15%-ная стерильная суспензия особым образом приготовленного костного порошка в персиковом масле) предложен для тканевой терапии. К препаратам ca относится также гипс (caso 4), применяемый в хирургии для гипсовых повязок, и мел (СаСО 3), назначаемый внутрь при повышенной кислотности желудочного сока и для приготовления зубного порошка.

Лит.: Краткая химическая энциклопедия, т. 2, М., 1963, с. 370-75; Родякин В. В., Кальций, его соединения и сплавы, М., 1967; Капланский С. Я., Минеральный обмен, М. - Л.,1938; Вишняков С. И., Обмен макроэлементов у сельскохозяйственных животных, М., 1967.

Среди всех элементов периодической системы можно выделить несколько таких, без которых не просто развиваются различные заболевания у живых организмов, но и вообще невозможно нормально жить и расти. Один из таких - кальций.

Интересно, что когда речь идет об этом металле, как простом веществе, то никакой пользы для человека он не имеет, даже вред. Однако стоит только упомянуть об ионах Са 2+ , как сразу возникает масса пунктов, характеризующих их важное значение.

Положение кальция в периодической системе

Характеристика кальция, как и любого другого элемента, начинается с указания его места положения в периодической системе. Ведь она дает возможность многое узнать о данном атоме:

  • заряд ядра;
  • количество электронов и протонов, нейтронов;
  • степень окисления, высшую и низшую;
  • электронную конфигурацию и прочие важные вещи.

Рассматриваемый нами элемент располагается в четвертом большом периоде второй группе, главной подгруппе и имеет порядковый номер 20. Также химическая таблица Менделеева показывает атомный вес кальция - 40,08, что является усредненным значением существующих изотопов данного атома.

Степень окисления одна, всегда постоянна, равна +2. Формула СаО. Латинское название элемента calcium, отсюда символ атома Са.

Характеристика кальция как простого вещества

При обычных условиях данный элемент представляет собой металл, серебристо-белого цвета. Формула кальция как простого вещества - Са. Вследствие высокой химической активности, способен образовывать множество соединений, относящихся к разным классам.

В твердом агрегатном состоянии в состав организма человека не входит, поэтому представляет значение для промышленных и технических нужд (в основном химические синтезы).

Является одним из самых распространенных по доле в земной коре металлов, около 1,5 %. Относится к группе щелочноземельных, так как при растворении в воде дает щелочи, но в природе встречается в виде множественных минералов и солей. Очень много кальция (400 мг/л) включено в состав морской воды.

Кристаллическая решетка

Характеристика кальция объясняется строением кристаллической решетки, которая у него может быть двух типов (так как существует альфа и бета форма):

  • кубическая гранецентрическая;
  • объемноцентрическая.

Тип связи в молекуле - металлическая, в узлах решетки, как и у всех металлов - атом-ионы.

Нахождение в природе

Существует несколько основных веществ в природе, которые содержат данный элемент.

  1. Морская вода.
  2. Горные породы и минералы.
  3. Живые организмы (раковины и панцири, костные ткани и так далее).
  4. Подземные воды в земной коре.

Можно обозначить следующие виды горных пород и минералов, которые являются природными источниками кальция.

  1. Доломит - смесь карбоната кальция и магния.
  2. Флюорит - фторид кальция.
  3. Гипс - CaSO 4 · 2H 2 O.
  4. Кальцит - мел, известняк, мрамор - карбонат кальция.
  5. Алебастр - CaSO 4 ·0.5H 2 O.
  6. Апатиты.

Всего выделяют около 350 различных минералов и горных пород, которые содержат кальций.

Способы получения

В свободном виде выделить металл долгое время не удавалось, так как его химическая активность высока, в природе в чистом виде не встретишь. Поэтому вплоть до XIX века (1808 года) рассматриваемый элемент был еще одной загадкой, которую несла таблица Менделеева.

Кальций как металл сумел синтезировать английский химик Гемфри Дэви. Именно он первым обнаружил особенности взаимодействия расплавов твердых минералов и солей с электрическим током. На сегодняшний день до сих пор самым актуальным способом получения данного металла является электролиз его солей, таких как:

  • смесь хлоридов кальция и калия;
  • смесь фторида и хлорида кальция.

Также можно извлечь кальций из его оксида при помощи распространенного в металлургии метода алюминотермии.

Физические свойства

Характеристика кальция по физическим параметрам может быть описана несколькими пунктами.

  1. Агрегатное состояние - при обычных условиях твердое.
  2. Температура плавления - 842 0 С.
  3. Металл мягкий, может резаться ножом.
  4. Цвет - серебристо-белый, блестящий.
  5. Обладает хорошими проводниковыми и теплопроводными свойствами.
  6. При длительном нагревании переходит в жидкое, затем парообразное состояние, теряя металлические свойства. Температура кипения 1484 0 С.

Физические свойства кальция имеют одну особенность. Когда на металл оказывается давление, то он в какой-то момент времени теряет свои металлические свойства и способность к электропроводимости. Однако при дальнейшем увеличении воздействия вновь восстанавливается и проявляет себя как сверхпроводник, в несколько раз превышающий по данным показателям остальные элементы.

Химические свойства

Активность данного металла очень высока. Поэтому существует множество взаимодействий, в которые вступает кальций. Реакции со всеми неметаллами для него - обычное дело, ведь как восстановитель он очень силен.

  1. При нормальных условиях легко реагирует с образованием соответствующих бинарных соединений с: галогенами, кислородом.
  2. При нагревании: водород, азот, углерод, кремний, фосфор, бор, сера и прочие.
  3. На открытом воздухе сразу взаимодействует с углекислым газом и кислородом, поэтому покрывается серым налетом.
  4. С кислотами реагирует бурно, иногда с воспламенением.

Интересные свойства кальция проявляются, когда речь идет о нем в составе солей. Так, красивые пещерные вырастающие на потолке и стенах, это не что иное, как образовавшийся со временем из воды, углекислого газа и гидрокарбоната под влиянием процессов внутри подземных вод.

Учитывая, насколько металл активен в обычном состоянии, хранят его в лабораториях, как и щелочные. В темной стеклянной посуде, с плотно закрытой крышкой и под слоем керосина или парафина.

Качественная реакция на ион кальция - это окраска пламени в красивый, насыщенный кирпично-красный цвет. Также идентифицировать металл в составе соединений можно по нерастворимым выпадающим осадкам некоторых его солей (карбонат кальция, фторид, сульфат, фосфат, силикат, сульфит).

Соединения металла

Разновидности соединений металла следующие:

  • оксид;
  • гидроксид;
  • соли кальция (средние, кислые, основные, двойные, комплексные).

Оксид кальция известен как СаО используется для создания строительного материала (извести). Если загасить оксид водой, то получится соответствующий гидроксид, проявляющий свойства щелочи.

Большое практическое значение имеют именно различные соли кальция, которые используются в разных отраслях хозяйства. Какие именно существуют соли, мы уже упоминали выше. Приведем примеры по типам этих соединений.

  1. Средние соли - карбонат СаСО 3 , фосфат Са 3 (РО 4) 2 и другие.
  2. Кислые - гидросульфат CaHSO 4 .
  3. Основные - гидрокарбонат (СаОН) 3 PO 4 .
  4. Комплексные - Cl 2.
  5. Двойные - 5Ca(NO 3) 2 *NH 4 NO 3 *10H 2 O.

Именно в форме соединений данного класса кальций имеет значение для биологических систем, так как источником ионов для организма являются соли.

Биологическая роль

Чем же важен кальций для организма человека? Причин несколько.

  1. Именно ионы этого элемента входят в состав межклеточного вещества и тканевой жидкости, участвуя в регуляции механизмов возбуждения, выработки гормонов и нейромедиаторов.
  2. Кальций накапливается в костях, зубной эмали в количестве около 2,5% от общей массы тела. Это достаточно много и играет важную роль в укреплении этих структур, сохранении их прочности и устойчивости. Рост организма без этого невозможен.
  3. Свертываемость крови также зависит от рассматриваемых ионов.
  4. Входит в состав сердечной мышцы, участвуя в ее возбуждении и сокращении.
  5. Является участником процессов экзоцитоза и других внутриклеточных изменений.

Если количество потребляемого кальция будет недостаточно, то возможно развитие таких заболеваний, как:

  • рахит;
  • остеопороз;
  • заболевания крови.

Суточная норма для взрослого человека - 1000 мг, а для детей от 9 лет 1300 мг. Для того чтобы не допустить переизбыток этого элемента в организме, следует не превышать указанной дозы. В противном случае могут развиться заболевания кишечника.

Для всех остальных живых существ кальций не менее важен. Например, многие хоть и не имеют скелета, однако наружные средства укрепления их также являются образованиями этого металла. Среди них:

  • моллюски;
  • мидии и устрицы;
  • губки;
  • коралловые полипы.

Все они носят на своей спине или в принципе формируют в процессе жизнедеятельности некий наружный скелет, защищающий их от внешних воздействий и хищников. Основная составная часть его - соли кальция.

Позвоночные животные, как и человек, нуждаются в рассматриваемых ионах для нормального роста и развития и получают их с пищей.

Есть много вариантов, при помощи которых возможно восполнить недостающую норму элемента в организме. Лучше всего, конечно, естественные методы - продукты, содержащие нужный атом. Однако если это по каким-либо причинам недостаточно или невозможно, медицинский путь также приемлем.

Так, список продуктов, содержащих кальций, примерно такой:

  • молочные и кисломолочные изделия;
  • рыба;
  • зелень;
  • зерновые культуры (гречка, рис, выпечка из цельнозерновой муки);
  • некоторые цитрусовые (апельсины, мандарины);
  • бобовые;
  • все орехи (особенно, миндаль и грецкие).

Если же на какие-то продукты аллергия или нельзя употреблять их по другой причине, то восполнить уровень нужного элемента в организме помогут кальций содержащие препараты.

Все они представляют собой соли этого металла, обладающие способностью легко усваиваться организмом, быстро всасываясь в кровь и кишечник. Среди них самыми популярными и используемыми являются следующие.

  1. Хлорид кальция - раствор для инъекций или для приема внутрь взрослым и детям. Отличается концентрацией соли в составе, используется для "горячих уколов", поскольку вызывает именно такое ощущение при вкалывании. Есть формы с фруктовым соком для облегчения приема внутрь.
  2. Выпускается как таблетками (0,25 или 0,5 г), так и растворами для внутривенных инъекций. Часто в виде таблеток содержит различные фруктовые добавки.
  3. Лактат кальция - выпускается в таблетках по 0,5 г.

Кальций (латинское Calcium, обозначается символом Ca) - элемент с атомным номером 20 и атомной массой 40,078. Является элементом главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Дмитрия Ивановича Менделеева. При нормальных условиях простое вещество кальций - легкий (1,54 г/см3) ковкий, мягкий химически активный щелочноземельный металл серебристо-белого цвета.

В природе кальций представлен в виде смеси шести изотопов: 40Ca (96,97 %), 42Ca (0,64 %), 43Ca (0,145 %), 44Ca (2,06 %), 46Ca (0,0033 %) и 48Ca (0,185 %). Основным изотопом двадцатого элемента - наиболее распространенным - является 40Са, его изотопная распространенность порядка 97 %. Из шести природных изотопов кальция пять стабильны, шестой изотоп 48Ca, самый тяжелый из шести и довольно редкий (его изотопная распространенность всего 0,185 %), как было недавно установлено, испытывает двойной β-распад с периодом полураспада 5,3∙1019 лет. Полученные искусственным путем изотопы с массовыми числами 39, 41, 45, 47 и 49 - радиоактивны. Чаще всего они используются в качестве изотопного индикатора при изучении процессов минерального обмена в живом организме. 45Ca, получаемый облучением металлического кальция или его соединений нейтронами в урановом реакторе, играет большую роль при изучении обменных процессов, происходящих в почвах, и при исследовании процессов усвоения кальция растениями. Благодаря этому же изотопу удалось обнаружить источники загрязнения различных сортов стали и сверхчистого железа соединениями кальция в процессе выплавки.

Соединения кальция - мрамор, гипс, известняк и известь (продукт обжига известняка) были известны с древнейших времен и широко применялись в строительстве и медицине. Древние Египтяне использовали соединения кальция при строительстве своих пирамид, а жители великого Рима изобрели бетон - используя смесь из дробленого камня, извести и песка. До самого конца XVIII века химики были убеждены, что известь - простое тело. Лишь в 1789 году Лавуазье предположил, что известь, глинозем и некоторые другие соединения - сложные вещества. В 1808 году металлический кальций был получен Г.Дэви путем электролиза.

Применение металлического кальция связано с его высокой химической активностью. Он используется для восстановления из соединений некоторых металлов, например, тория, урана, хрома, циркония, цезия, рубидия; для удаления из стали и из некоторых других сплавов кислорода, серы; для обезвоживания органических жидкостей; для поглощения остатков газов в вакуумных приборах. Кроме того, металлический кальций служит легирующим компонентом некоторых сплавов. Гораздо шире применяются соединения кальция - их используют в строительстве, пиротехнике, производстве стекла, медицине и многих других областях.

Кальций - один из важнейших биогенных элементов, он необходим большинству живых организмов для нормального протекания жизненных процессов. В организме взрослого человека содержится до полутора килограмм кальция. Он присутствует во всех тканях и жидкостях живых организмов. Двадцатый элемент необходим для формирования костной ткани, поддержания сердечного ритма, свертываемости крови, поддержания нормальной проницаемости наружных клеточных мембран, образования ряда ферментов. Список функций, которые выполняет кальций в организмах растений и животных весьма велик. Достаточно сказать, что лишь редкие организмы способны развиваться в среде, лишенной кальция, а другие организмы на 38 % состоят из этого элемента (человеческий организм содержит всего примерно 2 % кальция).

Биологические свойства

Кальций - один из биогенных элементов, его соединения находятся практически во всех живых организмах (немногие организмы способны развиваться в среде, лишенной кальция), обеспечивая нормальное протекание жизненных процессов. Двадцатый элемент присутствует во всех тканях и жидкостях животных и растений, его большая часть (в организмах позвоночных - в том числе и человека) содержится в скелете и зубах в виде фосфатов (например, гидроксиапатит Ca5(PO4)3OH или 3Ca3(PO4)2 Са(OH)2). Использование двадцатого элемента в качестве строительного материала костей и зубов связано с тем, что ионы кальция не используются в клетке. Концентрацию кальция контролируют особые гормоны, их совместное действие сохраняет и поддерживает структуру костей. Скелеты большинства групп беспозвоночных (моллюски, кораллы, губки и прочие) построены из различных форм карбоната кальция CaCO3 (извести). Многие беспозвоночные запасают кальций перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях. Животные получают кальций с пищей и водой, а растения - из почвы и по отношению к данному элементу делятся на кальцефилов и кальцефобов.

Ионы этого важного микроэлемента участвуют в процессах свертывания крови, а также в обеспечении постоянного осмотического давления крови. Кроме того, кальций необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активации ряда ферментов (возможно, данное обстоятельство связано с тем, что кальций замещает ионы магния). Ионы кальция передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, регулируют экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Кальций влияет на проходимость сосудов - без этого элемента жиры, липиды и холестерин осели бы на стенках сосудов. Кальций способствует выделению из организма солей тяжелых металлов и радионуклидов, выполняет антиоксидантные функции. Кальций влияет на систему воспроизводства, оказывает антистрессовый эффект и обладает антиаллергическим действием.

Содержание кальция в организме взрослого человека (массой 70 кг) составляет 1,7 кг (в основном в составе межклеточного вещества костной ткани). Потребность в данном элементе зависит от возраста: для взрослых необходимая дневная норма составляет от 800 до 1 000 миллиграммов, для детей от 600 до 900 миллиграммов. Для детей особенно важно потребление необходимой дозы для интенсивного роста и развития костей. Основным источником поступления кальция в организм служат молоко и молочные продукты, остальной кальций поступает с мясом, рыбой, некоторыми растительными продуктами (особенно с бобовыми). Всасывание катионов кальция происходит в толстом и тонком кишечнике, усвоению способствуют кислая среда, витамины C и D, лактоза (молочная кислота), а также ненасыщенные жирные кислоты. В свою очередь аспирин, щавелевая кислота, производные эстрогенов значительно снижают усвояемость двадцатого элемента. Так, соединяясь с щавелевой кислотой, кальций дает нерастворимые в воде соединения, которые являются компонентами камней в почках. Велика роль магния в кальциевом обмене - при его недостатке кальций «вымывается» из костей и осаждается в почках (почечные камни) и мышцах. Вообще в организме существует сложная система хранения и высвобождения двадцатого элемента, по этой причине содержание кальция в крови точно регулируется, и при правильном питании недостатка либо переизбытка не возникает. Длительная кальциевая диета способна вызвать судороги, боли в суставах, запоры, усталость, сонливость, задержки роста. Продолжительное отсутствие кальция в рационе питания приводит к развитию остеопороза. Никотин, кофеин и алкоголь являются одними из причин недостатка кальция в организме, так как способствуют его интенсивному выведению с мочой. Однако и избыток двадцатого элемента (либо витамина D) приводит к отрицательным последствиям - развивается гиперкальцемия, последствием которой является интенсивная кальцификация костей и тканей (в основном затрагивает мочевыделительную систему). Длительный профицит кальция нарушает функционирование мышечных и нервных тканей, увеличивает свертываемость крови и уменьшает усвояемость цинка клетками костной ткани. Возможно появление остеоартрита, катаракты, проблем с артериальным давлением. Из сказанного можно заключить, что клетки растительных и животных организмов нуждаются в строго определенных соотношениях ионов кальция.

В фармакологии и медицине соединения кальция используются для изготовления витаминов, таблеток, пилюль, инъекций, антибиотиков, а также для изготовления ампул, медицинской посуды.

Оказывается, довольно распространенной причиной мужского бесплодия является нехватка кальция в организме! Дело в том, что головка сперматозоида имеет стреловидное образование, которое полностью состоит из кальция, при достаточном количестве данного элемента сперматозоид способен преодолеть оболочку и оплодотворить яйцеклетку, при недостаточном наступает бесплодие.

Американские ученые выяснили, что недостаток ионов кальция в крови приводит к ослаблению памяти и снижению интеллекта. Так, например, из известного в США журнала Science News стало известно об опытах, которые подтвердили, что у кошек вырабатывается условный рефлекс лишь в том случае, если клетки их мозга содержат больше кальция, чем кровь.

Высоко ценимое в сельском хозяйстве соединение цианамид кальция, используется не только в качестве азотного удобрения и источника получения мочевины - ценнейшего удобрения и сырья для производства синтетических смол, но и в качестве вещества, с помощью которого удалось механизировать уборку хлопковых полей. Дело в том, что после обработки этим соединением хлопчатник моментально сбрасывает листву, что позволяет людям предоставить сбор хлопка машинам.

Говоря о пище богатой кальцием, всегда упоминают молочные продукты, однако само молоко содержит от 120 мг (коровье) до 170 мг (овечье) кальция на 100 г; творог и того беднее - всего 80 мг на 100 грамм. Из молочных продуктов лишь сыр содержит от 730 мг (гауда) до 970 мг (эмменталь) кальция на 100 г продукта. Однако рекордсменом по содержанию двадцатого элемента является мак - в 100 граммах маковых зерен содержится почти 1 500 мг кальция!

Хлорид кальция CaCl2, использующийся, например, в холодильных установках, является отходом многих химико-технологических процессов, в частности, крупномасштабного производства соды. Однако, несмотря на широкое использование хлорида кальция в различных областях, его потребление значительно уступает его производству. По этой причине, например, около заводов, производящих соду, образуются целые озера из рассола хлорида кальция. Подобные пруды-накопители не редкость.

Для того чтобы понять, как много потребляется соединений кальция, стоит привести всего пару примеров. При производстве стали известь используют для удаления фосфора, кремния, марганца и серы, в кислородно-конверторном процессе на тонну стали расходуется 75 килограмм извести! Другой пример из совершенно иной области - пищевой промышленности. При производстве сахара для осаждения сахарата кальция проводят реакцию сырого сахарного сиропа с известью. Так вот, тростниковый сахар обычно требует порядка 3-5 кг извести на тонну, а свекловичный сахар - в сто раз больше, то есть около полутонны извести на тонну сахара!

«Жёсткость» воды - это ряд свойств, которые придают воде растворенные в ней соли кальция и магния. Жесткость подразделяют на временную и постоянную. Временная или карбонатная жесткость обуславливается наличием в воде растворимых гидрокарбонатов Са(НCO3)2 и Mg(HCO3)2. Избавиться от карбонатной жесткости очень легко - при кипячении воды гидрокарбонаты превращаются в нерастворимые в воде карбонаты кальция и магния, выпадая в осадок. Постоянная жесткость создается сульфатами и хлоридами тех же металлов, однако избавиться от нее гораздо сложнее. Жесткая вода страшна не столько тем, что препятствует образованию мыльной пены и поэтому хуже отстирывает белье, гораздо страшнее то, что она образует слой накипи в паровых котлах и котельных установках, тем самым, снижая их КПД и приводя к аварийным ситуациям. Что интересно - определять жесткость воды умели еще в Древнем Риме. В качестве реактива использовалось красное вино - его красящие вещества образуют осадок с ионами кальция и магния.

Весьма интересен процесс подготовки кальция к хранению. Металлический кальций сохраняется в течение длительного времени в виде кусков массой от 0,5 до 60 кг. Эти «чушки» упаковывают в бумажные мешки, затем помещают в железные оцинкованные емкости с пропаянными и прокрашенными швами. Плотно закрытые емкости укладывают в деревянные ящики. Куски весом менее полукилограмма долго хранить нельзя - окисляясь, они быстро превращаются в окись, гидроокись и карбонат кальция.

История

Металлический кальций был получен сравнительно недавно - в 1808 году, однако с соединениями данного металла человечество знакомо очень давно. С древнейших времен люди использовали известняк, мел, мрамор, алебастр, гипс и прочие кальцийсодержащие соединения в строительстве и медицине. Известняк CaCO3, скорее всего, был первым строительным материалом, который использовал человек. Его применяли при возведении египетских пирамид и Великой китайской стены. Многие храмы и церкви на Руси, а также большинство зданий древней Москвы были построены с использованием известняка - белого камня. Еще в давние времена человек, обжигая известняк, получал негашеную известь (CaO), о чем свидетельствуют труды Плиния Старшего (I век н.э.) и Диоскорида - врача при римской армии, которой в сочинении «О лекарственных средствах» ввел для окиси кальция название «негашеная известь», которое сохранилось и в наше время. И всё это притом, что чистый оксид кальция был впервые описан немецким ученым-химиком И. Потом лишь в 1746 году, а в 1755 году химик Дж. Блэк, изучая процесс обжига, выявил, что потеря массы известняка при обжиге происходит за счет выделения углекислого газа:

CaCO3 ↔ CO2 + CaO

Египетские строительные растворы, которые использовались в пирамидах Гизы, были основаны на частично обезвоженном гипсе CaSO4 2H2O или говоря иначе - алебастре 2CaSO4∙H2O. Он же является основой всей штукатурки в гробнице Тутанхамона. Жженый гипс (алебастр) египтяне использовали в качестве вяжущего вещества при строительстве ирригационных сооружений. Обжигая природный гипс при высоких температурах, египетские строители добивались его частичного обезвоживания, причем от молекулы отщеплялась не только вода, но и серный ангидрид. В дальнейшем при разведении водой получалась очень прочная масса, которая не боялась воды и колебаний температуры.

Римлян по праву можно назвать изобретателями бетона, ведь в своих постройках они использовали одну из разновидностей данного строительного материала - смесь дробленого камня, песка и извести. Существует описание Плиния Старшего постройки цистерн из такого бетона: «Для постройки цистерн берут пять частей чистого гравийного песка, две части самой лучшей гашеной извести и обломки силекса (твердая лава) весом не больше фунта каждый, после смешивания уплотняют нижнюю и боковые поверхности ударами железной трамбовки». Во влажном климате Италии бетон был наиболее устойчивым материалом.

Получается, что человечеству были давно известны соединения кальция, которые они широко употребляли. Однако вплоть до конца XVIII века химики считали известь простым телом, лишь в преддверии нового века началось изучение природы извести и прочих соединений кальция. Так Шталь предположил, что известь сложное тело, состоящее из землистого и водного начал, а Блэк установил различие между едкой известью и углекислой известью, содержавшей «фиксированный воздух». Антуан Лоран Лавуазье относил известковую землю (CaO) к числу элементов, то есть к простым веществам, хотя в 1789 году предположил, что известь, магнезия, барит, глинозём и кремнезём - вещества сложные, но доказать это будет возможно лишь разложив «упрямую землю» (оксид кальция). И первым, кому это удалось, был Хэмфри Дэви. После успешного разложения электролизом окислов калия и натрия химик решил получить тем же путем щелочноземельные металлы. Однако первые попытки были неудачны - англичанин пытался разложить известь путем электролиза на воздухе и под слоем нефти, затем прокаливал известь с металлическим калием в трубке и производил многие другие опыты, но безуспешно. Наконец, в приборе с ртутным катодом он получил электролизом извести амальгаму, а из нее металлический кальций. Довольно скоро этот метод получения металла был усовершенствован И. Берцелиусом и М. Понтиным.

Название новый элемент получил от латинского слова «calx» (в родительном падеже calcis) - известь, мягкий камень. Кальксом (calx) называли мел, известковый камень, вообще камень-голыш, но чаще же всего строительный раствор на основе извести. Это понятие употребляли и древние авторы (Витрувий, Плиний Старший, Диоскорид), описывая обжиг известняка, гашения извести и приготовления строительных растворов. Позже в кругу алхимиков «calx» обозначало продукт обжига вообще - в частности металлов. Так, например, оксиды металлов назывались металлическими известями, а сам процесс обжига - кальцинацией (calcinatio). В древнерусской рецептурной литературе встречается слово кал (грязь, глина), так в сборнике Троице-Сергиевской лавры (XV век) говорится: «обрящи кал, от него же творят златарие горнила». Лишь позднее слово кал, которое, несомненно, связано со словом «calx», стало синонимом слова навоз. В русской литературе начала XIX века кальций называли иногда основанием известковой земли, известковием (Щеглов, 1830), известковистостью (Иовский), калцием, кальцием (Гесс).

Нахождение в природе

Кальций один из самых распространенных элементов на нашей планете - пятый по количественному содержанию в природе (из неметаллов больше только кислорода - 49,5 % и кремния - 25,3 %) и третий среди металлов (более распространены лишь алюминий - 7,5 % и железо - 5,08 %). Кларк (среднее содержание в земной коре) кальция по разным оценкам составляет от 2,96 % по массе до 3,38 %, определенно можно сказать, что цифра эта порядка 3 %. В наружной оболочке атома кальция два валентных электрона, связь которых с ядром довольно непрочна. По этой причине кальций обладает высокой химической активностью и в природе в свободном виде не встречается. Однако он активно мигрирует и накапливается в различных геохимических системах, образуя приблизительно 400 минералов: силикаты, алюмосиликаты, карбонаты, фосфаты, сульфаты, боросиликаты, молибдаты, хлориды и прочие, занимая по этому показателю четвертое место. При расплавлении базальтовых магм кальций накапливается в расплаве и входит в состав главных породообразующих минералов, при фракционировании которых его содержание в ходе дифференциации магмы от основных к кислым породам падает. По большей части кальций залегает в нижней части земной коры, накапливаясь в основных породах (6,72 %); в земной мантии кальция мало (0,7 %) и, вероятно, еще меньше в земном ядре (в схожих с ядром железных метеоритах двадцатого элемента всего 0,02 %).

Правда, кларк кальция в каменных метеоритах составляет 1,4 % (встречается редкий сульфид кальция), в средних породах - 4,65 %, кислые породы содержат 1,58 % кальция по массе. Основная часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате - анортите Ca, а также диопсиде CaMg, волластоните Са3. В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3).

Карбонат кальция СаCO3 - одно из самых распространенных на Земле соединений - минералы на основе карбоната кальция покрывают примерно 40 миллионов квадратных километров земной поверхности. Во многих частях поверхности Земли имеются значительные осадочные залежи карбоната кальция, которые образовались из остатков древних морских организмов - мел, мрамор, известняки, ракушечники - все это СаCO3 с незначительными примесями, а кальцит - чистый СаCO3. Самый важный из этих минералов - известняк, точнее - известняки - ведь каждое месторождение отличается по плотности, составу и количеству примесей. Например, ракушечник - известняк органического происхождения, а имеющий меньше примесей карбонат кальция образует прозрачные кристаллы известкового или исландского шпата. Мел - еще одна часто встречаемая разновидность углекислого кальция, а вот мрамор - кристаллическая форма кальцита - встречается в природе гораздо реже. Принято считать, что мрамор образовался из известняка в древние геологические эпохи. При движении земной коры отдельные залежи известняка оказались погребенными под слоями других пород. Под действием высокого давления и температуры происходил процесс перекристаллизации, и известняк превращался в более плотную кристаллическую породу - мрамор. Причудливые сталактиты и сталагмиты - минерал арагонит, являющийся еще одной разновидностью карбоната кальция. Орторомбический арагонит образуется в теплых морях - громадными пластами карбоната кальция в виде арагонита образованы Багамы, острова Флорида-Кис и бассейн Красного моря. Также довольно широко распространены такие минералы кальция, как флюорит CaF2, доломит MgCO3 CaCO3, ангидрит CaSO4, фосфорит Са5(РО4)3(ОН,СО3) (с различными примесями) и апатиты Ca5(PO4)3(F,Cl,OH) - формы фосфорнокислого кальция, алебастр CaSO4 0,5H2O и гипс CaSO4 2H2O (формы сернокислого кальция) и другие. В кальцийсодержащих минералах присутствуют замещающие его изоморфно элементы-примеси (например, натрий, стронций, редкоземельные, радиоактивные и другие элементы).

Большое количество двадцатого элемента находится в природных водах вследствие существования глобального «карбонатного равновесия» между плохо растворимым СаСО3, хорошо растворимым Са(НСО3)2 и находящимся в воде и воздухе СО2:

CaCO3 + H2O + CO2 = Ca(HCO3)2 = Са2+ + 2HCO3-

Эта реакция обратима и является основой перераспределения двадцатого элемента - при высоком содержании углекислого газа в водах кальций находится в растворе, а при низком содержании CO2 в осадок выпадает минерал кальцит CaCO3, образуя мощные залежи известняка, мела, мрамора.

Немалое количество кальция входит в состав живых организмов, например, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3(PO4)2 Са(OH)2 - основа костной ткани позвоночных, в том числе и человека. Карбонат кальция СаСО3 - основная составляющая панцирей и раковин многих беспозвоночных, яичной скорлупы, кораллов и даже жемчуга.

Применение

Металлический кальций используется довольно редко. В основном этот металл (как и его гидрид) применяется при металлотермическом получении трудновосстанавливаемых металлов - урана, титана, тория, циркония, цезия, рубидия и ряда редкоземельных металлов из их соединений (оксидов или галогенидов). Кальций используют как восстановитель при получении никеля, меди и нержавеющей стали. Также двадцатый элемент используют для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических растворителей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Металлический кальций находит применение при получении антифрикционных сплавов системы Pb-Na-Ca (используются в подшипниках), а также сплава Pb-Ca, служащего для изготовления оболочки электрических кабелей. Сплав силикокальций (Ca-Si-Ca) применяется в качестве раскислителя и дегазатора в производстве качественных сталей. Кальций применяется и как легирующий элемент для алюминиевых сплавов и в качестве модифицирующей добавки для магниевых сплавов. Так, например, введение кальция повышает прочность алюминиевых подшипников. Чистый кальций применяется и для легирования свинца, идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА. С помощью кальция регулируют содержание углерода в чугуне и удаляют висмут из свинца, очищают сталь от кислорода, серы и фосфора. Кальций, а также его сплавы с алюминием и магнием используются в резервных тепловых электрических батареях в качестве анода (например, кальций-хроматный элемент).

Однако значительно шире используются соединения двадцатого элемента. И в первую очередь речь идет о природных соединениях кальция. Одно из самых распространенных на Земле соединений кальция - карбонат СаCO3. Чистый карбонат кальция - минерал кальцит, а известняк, мел, мрамор, ракушечник - СаCO3 с незначительными примесями. Смешанный карбонат кальция и магния носит название доломит. Известняк и доломит используются, главным образом, в качестве строительных материалов, дорожных покрытий либо реагентов, понижающих кислотность почвы. Карбонат кальция СаCO3 необходим для получения оксида кальция (негашеной извести) CaO и гидроксида кальция (гашеной извести) Ca(OH)2. В свою очередь CaO и Ca(OH)2 являются основными веществами во многих областях химической, металлургической и машиностроительной промышленности - оксид кальция, как в свободном виде, так и в составе керамических смесей, применяется в производстве огнеупорных материалов; колоссальные объёмы гидроксида кальция необходимы целлюлозно-бумажной промышленности. Кроме того, Ca(OH)2 применяется при производстве хлорной извести (хорошее отбеливающее и дезинфицирующее средство), бертоллетовой соли, соды, некоторых ядохимикатов для борьбы с вредителями растений. Огромное количество извести расходуется при производстве сталей - для удаления серы, фосфора, кремния и марганца. Другая роль извести в металлургии - это производство магния. Известь используется также в качестве смазочного материала при вытягивании стальной проволоки и нейтрализации отходов травильных жидкостей, содержащих серную кислоту. Кроме того, именно известь - самый распространенный химический реагент в обработке питьевой и промышленной воды (совместно с квасцами или солями железа она коагулирует суспензии и удаляет осадок, а также смягчает воду за счет удаления временной - гидрокарбонатной - жесткости). В быту и медицине осажденный карбонат кальция применяется как средство, нейтрализующее кислоту, мягкий абразив в зубных пастах, источник дополнительного кальция в диетах, составная часть жевательной резинки и наполнитель в косметике. СаСО3 также используется как наполнитель в резинах, латексах, красках и эмалях, а также в пластиках (около 10 % по массе) для улучшения их термостойкости, жесткости, твердости и обрабатываемости.

Особую важность имеет фторид кальция CaF2, ведь в виде минерала (флюорит) он является единственным промышленно важным источником фтора! Фторид кальция (флюорит) применяется в виде монокристаллов в оптике (астрономические объективы, линзы, призмы) и как лазерный материал. Дело в том, что стекла лишь из фторида кальция проницаемы для всей области спектра. Вольфрамат кальция (шеелит) в виде монокристаллов применяется в лазерной технике, а также как сцинтиллятор. Не менее важен хлорид кальция CaCl2 - компонент рассолов для холодильных установок и для заполнения шин тракторов и иного транспорта. С помощью хлорида кальция очищают дороги и тротуары от снега и льда, это соединение применяется для защиты угля и руды от замерзания при транспортировке и хранении, его раствором пропитывают древесину для придания ей огнестойкости. CaCl2 используют в бетонных смесях для ускорения начала схватывания, повышения начальной и конечной прочности бетона.

Искусственно получаемый карбид кальция CaC2 (при прокаливании в электропечах оксида кальция с коксом) применяется для получения ацетилена и для восстановления металлов, а также при получении цианамида кальция, который, в свою очередь, под действием водяного пара освобождает аммиак. Кроме этого, цианамид кальция идет на производство мочевины - ценнейшего удобрения и сырья для производства синтетических смол. Нагреванием кальция в атмосфере водорода получают CaH2 (гидрид кальция), используемый в металлургии (металлотермии) и при получении водорода в полевых условиях (из 1 килограмма гидрида кальция можно получить более кубометра водорода), что используется для заполнения аэростатов, например. В лабораторной практике гидрид кальция используется как энергичный восстановитель. Инсектицид арсенат кальция, который получают нейтрализацией мышьяковой кислоты известью, широко используется для борьбы с хлопковым долгоносиком, яблонной плодожоркой, табачным червем, колорадским жуком. Важными фунгицидами являются известково-сульфатные аэрозоли и бордосские смеси, которые получают из сульфата меди и гидроксида кальция.

Производство

Первым, кто получил металлический кальций, был английский химик Хэмфри Дэви. В 1808 году он произвел электролиз смеси влажной гашеной извести Са(ОН)2 с оксидом ртути HgO на платиновой пластине, служившей анодом (в качестве катода выступала платиновая проволока, погруженная в ртуть), в результате чего Дэви получил амальгаму кальция, отогнав из нее ртуть, химик получил новый металл, который он назвал кальцием.

В современной промышленности свободный металлический кальций получают электролизом расплава хлорида кальция СаСl2, доля которого составляет 75-85 % и хлорида калия КСl (возможно использование смеси СаСl2 и CaF2) либо алюмотермическим восстановлением оксида кальция СаО при температуре 1 170-1 200 °C. Необходимый для электролиза чистый безводный хлорид кальция получают хлорированием окиси кальция при нагреве в присутствии угля или обезвоживанием СаСl2∙6Н2О, полученного действием соляной кислоты на известняк. Электролитический процесс происходит в электролизной ванне, в которую помещают сухую, очищенную от примесей соль хлорида кальция и хлористый калий, необходимый для понижения температуры плавления смеси. Над ванной помещают графитовые блоки - анод, чугунная или стальная ванна, заполненная медно-кальциевым сплавом, выступает в роли катода. В процессе электролиза кальций переходит в медно-кальциевый сплав, существенно обогащая его, часть обогащенного сплава постоянно извлекается, взамен добавляют сплав, обедненный кальцием (30-35 % Са), в тоже время хлор образует хлорвоздушную смесь (анодные газы), которая в последствии поступает на хлорирование известкового молока. Обогащенный медно-кальциевый сплав можно использовать непосредственно как сплав или направлять на очистку (дистилляцию), где отгонкой в вакууме (при температуре 1 000-1 080 °С и остаточном давлении 13-20 кПа) из него получают металлический кальций ядерной чистоты. Для получения высокочистого кальция его перегоняют дважды. Процесс электролиза проводится при температуре 680-720 °С. Дело в том, что это наиболее оптимальная температура для электролитического процесса - при более низкой температуре обогащенный кальцием сплав всплывает на поверхность электролита, а при более высокой происходит растворение кальция в электролите с образованием СаСl. При электролизе с жидкими катодами из сплавов кальция и свинца или кальция и цинка непосредственно получают используемые в технике сплавы кальция со свинцом (для подшипников) и с цинком (для получения пенобетона - при взаимодействии сплава с влагой выделяется водород и создается пористая структура). Иногда процесс ведут с железным охлаждаемым катодом, который только соприкасается с поверхностью расплавленного электролита. По мере выделения кальция катод постепенно поднимают, вытягивают из расплава стержень (50-60 см) из кальция, защищенный от кислорода воздуха слоем затвердевшего электролита. «Методом касания» получают кальций сильно загрязненный хлористым кальцием, железом, алюминием, натрием, очищение проводится переплавкой в атмосфере аргона.

Другой метод получения кальция - металлотермический - был теоретически обоснован еще в 1865 году известным русским химиком Н. Н. Бекетовым. Алюмотермический метод основан на реакции:

6CaO + 2Al → 3CaO Al2O3 + 3Ca

Из смеси окиси кальция с порошкообразным алюминием прессуют брикеты, их помещают в реторту из хромоникелевой стали и отгоняют образовавшийся кальций при 1 170-1 200 °С и остаточном давлении 0,7-2,6 Па. Кальций получается при этом в виде пара, который затем конденсируют на холодной поверхности. Алюмотермический способ получения кальция применяется в Китае, во Франции и ряде других стран. В промышленных масштабах металлотермический способ получения кальция первыми применили США в годы второй мировой войны. Таким же образом кальций может быть получен восстановлением СаО ферросилицием или силикоалюминием. Кальций выпускают в виде слитков или листов с чистотой 98-99 %.

Плюсы и минусы существуют в обоих методах. Электролитический метод многооперационен, энергоемок (на 1 кг кальция расходуется энергии 40-50 кВт.ч.), к тому же экологически не безопасен, требует большого количества реагентов и материалов. Однако выход кальция при данном методе составляет 70-80 %, в то время как при алюмотермическом методе выход составляет всего 50-60 %. К тому же при металлотермическом способе получения кальция минус в том, что необходимо осуществлять повторную дистилляцию, а плюс - в низком расходе электроэнергии, и в отсутствии газовых и жидких вредных выбросов.

Не так давно был разработан новый метод получения металлического кальция - он основан на термической диссоциации карбида кальция: раскаленный в вакууме до 1 750 °C карбид разлагается с образованием паров кальция и твердого графита.

До середины XX века металлический кальций производился в очень малых количествах, так как почти не находил применения. Например, в Соединенных Штатах Америки в годы второй мировой войны потреблялось не более 25 тонн кальция, а в Германии всего 5-10 тонн. Лишь во второй половине XX века, когда выяснилось, что кальций активный восстановитель многих редких и тугоплавких металлов, начался стремительный рост потребления (порядка 100 тонн в год) и, как следствие, производства данного металла. С развитием атомной промышленности, где кальций используется в качестве компонента металлотермического восстановления урана из тетрафторида урана (исключение США, где вместо кальция применяется магний), спрос (около 2 000 тонн в год) на элемент номер двадцать, как и его производство, возросло многократно. На данный момент основными производителями металлического кальция можно считать Китай, Россию, Канаду и Францию. Из этих стран кальций направляется в США, Мексику, Австралию, Швейцарию, Японию, Германию, Великобританию. Цены на металлический кальций неуклонно росли до тех пор, пока Китай не стал производить металл в таких объемах, что на мировом рынке появился излишек двадцатого элемента, что привело к резкому снижению цены.

Физические свойства

Что же представляет собой металлический кальций? Какими же свойствами обладает этот элемент, полученный в 1808 году английским химиком Хэмфри Дэви, металл, масса которого в организме взрослого человека может составлять до 2 килограмм?

Простое вещество кальций - серебристо-белый легкий металл. Плотность кальция всего 1,54 г/см3 (при температуре 20 °C), что значительно меньше плотности железа (7,87 г/см3), свинца (11,34 г/см3), золота (19,3 г/см3) или платины (21,5 г/см3). Кальций легче даже, чем такие «невесомые» металлы как алюминий (2,70 г/см3) или магний (1,74 г/см3). Немногие металлы могут «похвастать» плотностью меньшей, чем у двадцатого элемента - натрий (0,97 г/см3), калий (0,86 г/см3), литий (0,53 г/см3). По плотности кальций очень похож на рубидий (1,53 г/см3). Температура плавления кальция 851 °C, температура кипения 1 480 °C. Схожие температуры плавления (хотя и немного ниже) и кипения у других щелочноземельных металлов - стронция (770 °C и 1 380 °C) и бария (710 °C и 1 640 °C).

Металлический кальций существует в двух аллотропических модификациях: при нормальной температуре до 443 °С устойчив α-кальций с кубической гранецентрированной решеткой типа меди, с параметрами: а = 0,558 нм, z = 4, пространственная группа Fm3m, атомный радиус 1,97 A, ионный радиус Ca2+ 1,04 A; в интервале температур 443-842 °С устойчив β-кальций с кубической объемноцентрированной решеткой типа α-железа, с параметрами а = 0,448 нм, z = 2, пространственная группа Im3m. Стандартная энтальпия перехода из α-модификации в β-модификацию составляет 0,93 кДж/моль. Температурный коэффициент линейного расширения для кальция в интервале температур 0-300 °C составляет 22 10-6. Теплопроводность двадцатого элемента при 20 °C равна 125,6 Вт/(м К) или 0,3 кал/(см сек °C). Удельная теплоемкость кальция в интервале от 0 до 100° C равна 623,9 дж/(кг К) или 0,149 кал/(г °C). Удельное электросопротивление кальция при температуре 20° C составляет 4,6 10-8 ом м или 4,6 10-6 ом см; температурный коэффициент электросопротивления элемента номер двадцать 4,57 10-3 (при 20 °C). Модуль упругости кальция 26 Гн/м2 или 2600 кгс/мм2; предел прочности при растяжении 60 Мн/м2 (6 кгс/мм2); предел упругости для кальция равен 4 Мн/м2 или 0,4 кгс/мм2, предел текучести 38 Мн/м2 (3,8 кгс/мм2); относительное удлинение двадцатого элемента 50 %; твердость кальция по Бринеллю 200-300 Мн/м2 или 20-30 кгс/мм2. При постепенном повышении давления кальций начинает проявлять свойства полупроводника, но не становится им в полном смысле этого слова (при этом металлом он уже тоже не является). При дальнейшем повышении давления кальций возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций (то есть параллели в периодической системе сохраняются).

Механические свойства элементарного кальция не отличаются от свойств других представителей семейства металлов, являющихся великолепными конструкционными материалами: металлический кальций высокой чистоты пластичен, хорошо прессуется и прокатывается, вытягивается в проволоку, куётся и поддается обработке резанием - его можно обтачивать на токарном станке. Однако, несмотря на все эти великолепные качества конструкционного материала, кальций таковым не является - причиной всему его высокая химическая активность. Правда не стоит забывать о том, что кальций - незаменимый конструкционный материал костной ткани, а его минералы - строительный материал уже на протяжении многих тысячелетий.

Химические свойства

Конфигурация внешней электронной оболочки атома кальция 4s2, что обуславливает валентность 2 двадцатого элемента в соединениях. Два электрона внешнего слоя сравнительно легко отщепляются от атомов, которые превращаются при этом в положительные двухзарядные ионы. По этой причине в отношении химической активности кальций лишь немного уступает щелочным металлам (калий, натрий, литий). Подобно последним, кальций уже при обычной комнатной температуре легко взаимодействует с кислородом, углекислым газом и влажным воздухом, покрываясь при этом тускло-серой пленкой из смеси оксида СаО и гидроксида Са(ОН)2. Поэтому хранят кальций в герметично закрытом сосуде под слоем минерального масла, жидкого парафина либо же керосина. При нагревании в кислороде и на воздухе кальций воспламеняется, сгорая ярко-красным пламенем, при этом образуется основной оксид СаО, который представляет собой белое, весьма огнестойкое вещество, температура плавления которого примерно 2 600 °C. Оксид кальция также известен в технике как негашеная или жженая известь. Получены также пероксиды кальция - CaO2 и CaO4. С водой кальций реагирует с выделением водорода (в ряду стандартных потенциалов кальций расположен слева от водорода и способен вытеснять его из воды) и образованием гидроксида кальция Са(ОН)2, причем в холодной воде скорость реакции постепенно уменьшается (вследствие образования на поверхности металла слоя малорастворимого гидроксида кальция):

Ca + 2Н2О → Ca(ОН)2 + Н2 + Q

Более энергично кальций взаимодействует с горячей водой, бурно вытесняя водород и образуя Са(ОН)2. Гидроксид кальция Са(ОН)2 - сильное основание, мало растворимое в воде. Насыщенный раствор гидроксида кальция называется известковой водой и имеет щелочную реакцию. На воздухе известковая вода быстро становится мутной вследствие поглощения ею диоксида углерода и образования нерастворимого карбоната кальция. Несмотря на столь бурные процессы, происходящие при взаимодействии двадцатого элемента с водой, всё же, в отличие от щелочных металлов, реакция взаимодействия кальция с водой протекает менее энергично - без взрывов и воспламенений. Вообще химическая активность кальция ниже, чем у других щелочноземельных металлов.

Кальций активно соединяется с галогенами, образуя при этом соединения типа СаХ2 - с фтором он реагирует на холоду, а с хлором и бромом при температуре выше 400 °C, давая соответственно CaF2, CaCl2 и CaBr2. Эти галогениды в расплавленном состоянии образуют с кальцием моногалогениды типа СаХ - CaF, CaCl, в которых кальций формально одновалентен. Данные соединения стабильны только выше температур плавления дигалогенидов (они диспропорционируют при охлаждении с образованием Са и СаХ2). Кроме того, кальций активно взаимодействует, особенно при нагревании, с различными неметаллами: с серой при нагревании получается сульфид кальция CaS, последний присоединяет серу, образуя полисульфиды (CaS2, CaS4 и другие); взаимодействуя с сухим водородом при температуре 300-400 °C, кальций образует гидрид CaH2 - ионное соединение, в котором водород является анионом. Гидрид кальция CaH2 - белое солеобразное вещество, бурно реагирующее с водой с выделением водорода:

CaH2 + 2H2O → Ca(OH)2 + 2H2

При нагревании (порядка 500° C) в атмосфере азота кальций загорается и образует нитрид Ca3N2, известный в двух кристаллических формах - высокотемпературной α и низкотемпературной β. Также был получен нитрид Ca3N4 при нагревании в вакууме амида кальция Ca(NH2)2. При нагревании без доступа воздуха с графитом (углеродом), кремнием или фосфором кальций дает соответственно карбид кальция CaC2, силициды Ca2Si, Ca3Si4, CaSi, CaSi2 и фосфиды Ca3P2, СаР и СаР3. Большинство из соединений кальция с неметаллами легко разлагается водой:

СаН2 + 2Н2О → Са(ОН)2 + 2Н2

Ca3N2 + 6Н2О → 3Са(ОН)2 + 2NH3

С бором кальций образует борид кальция СаВ6, с халькогенами - халькогениды CaS, CaSe, СаТе. Известны также полихалькогениды CaS4, CaS5, Са2Те3. Кальций образует интерметаллические соединения с различными металлами - алюминием, золотом, серебром, медью, свинцом и прочими. Будучи энергичным восстановителем кальций вытесняет при нагревании почти все металлы из их окислов, сульфидов и галогенидов. Кальций хорошо растворяется в жидком аммиаке NH3 с образованием синего раствора, при испарении которого выделяется аммиакат [Са(NН3)6] - твердое соединение золотистого цвета с металлической проводимостью. Соли кальция обычно получают взаимодействием кислотных оксидов с оксидом кальция, действием кислот на Са(ОН)2 или СаСО3, обменными реакциями в водных растворах электролитов. Многие соли кальция хорошо растворимы в воде (хлорид CaCl2, бромид CaBr2, иодид CaI2 и нитрат Ca(NO3)2), они почти всегда образуют кристаллогидраты. Нерастворимы в воде фторид CaF2, карбонат CaCO3, сульфат CaSO4, ортофосфат Ca3(PO4)2, оксалат СаС2О4 и некоторые другие.

Кальций - элемент 4-го периода и ПА-группы Периодической системы, порядковый номер 20. Электронная формула атома [ 18 Ar]4s 2 , степени окисления +2 и 0. Относится к щелочноземельным металлам. Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде. В природе — шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.Недостаток кальция в почве восполняется внесением известковых удобрений (СаС0 3 , СаО, цианамид кальция CaCN 2 и др.). Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно-оранжевый цвет (качественное обнаружение ).

Кальций Са

Серебристо-белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН) 2 .Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

Восстанавливает другие металлы из их оксидов (промышленно важный метод — кальцийтермия ):

Получение кальция в промышленности :

Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

Оксид кальция СаО

Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Ca 2+ O 2- . Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо- эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН) 2 , СаС 2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

Уравнения важнейших реакций:

Получение СаО в промышленности — обжиг известняка (900-1200 °С):

СаСО3 = СаО + СО2

Гидроксид кальция Са(ОН) 2

Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са 2+ (ОН —) 2 . Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше — в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из-за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са 2+ — пропускание углекислого газа через известковую воду с появлением осадка СаС0 3 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена. Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов — тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

Последние материалы сайта