Определить высоту по времени падения. Свободное падение тел. Ускорение свободного падения. Формулы для расчетов

06.05.2024
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Свободное падение - это движение тел только лишь под действием притяжения Земли (под действием силы тяжести)

В условиях Земли падение тел считается условно свободным, т.к. при падении тела в воздушной среде всегда возникает еще и сила сопротивления воздуха.

Идеальное свободное падение возможно лишь в вакууме, где нет силы сопротивления воздуха, и независимо от массы, плотности и формы все тела падают одинаково быстро, т. е. в любой момент времени тела имеют одинаковые мгновенные скорости и ускорения.

Наблюдать идеальное свободное падение тел можно в трубке Ньютона, если с помощью насоса выкачать из неё воздух.

В дальнейших рассуждениях и при решении задачпренебрегаем силой трения о воздух и считаем падение тел в земных условиях идеально свободным.

УСКОРЕНИЕ СВОБОДНОГО ПАДЕНИЯ

При свободном падении все тела вблизи поверхности Земли независимо от их массы приобретают одинаковое ускорение, называемое ускорением свободного падения.
Условное обозначение ускорения свободного падения - g.

Ускорение свободного падения на Земле приблизительно равно:
g = 9,81м/с2.

Ускорение свободного падения всегда направлено к центру Земли.

Вблизи поверхности Земли величина силы тяжести считается постоянной, поэтому свободное падение тела - это движение тела под действием постоянной силы. Следовательно, свободное падение - это равноускоренное движение.

Вектор силы тяжести и создаваемого ею ускорения свободного падения направлены всегда одинаково.

Все формулы для равноускоренного движения применимы для свободного падения тел.

Величина скорости при свободном падении тела в любой момент времени:

перемещение тела:

В этом случае вместо ускорения а, в формулы для равноускоренного движения вводится ускорение свободного падения g =9,8м/с2.

В условиях идеального падения падающие с одинаковой высоты тела достигают поверхности Земли, обладая одинаковыми скоростями и затрачивая на падение одинаковое время.

При идеальном свободном падении тело возвращается на Землю со скоростью, величина которой равна модулю начальной скорости.

Время падения тела равно времени движения вверх от момента броска до полной остановки в наивысшей точке полета.

Только на полюсах Земли тела падают строго по вертикали. Во всех остальных точках планеты траектория свободно падающего тела отклоняется к востоку за счет силы Кариолиса, возникающей во вращающихся системах (т.е. сказывается влияние вращения Земли вокруг своей оси).


ЗНАЕШЬ ЛИ ТЫ


А КАКОВО ПАДЕНИЕ ТЕЛ В РЕАЛЬНЫХ УСЛОВИЯХ?

Если выстрелить из ружья вертикально вверх, то, учитывая силу трения о воздух, свободно падающая с любой высоты пуля приобретет у земли скорость не более 40 м/с.

В реальных условиях из-за наличия силы трения о воздух механическая энергия тела частично переходит в тепловую. В результате максимальная высота подъема тела оказывается меньше, чем могла бы быть при движении в безвоздушном пространстве, а в любой точке траектории при спуске скорость оказывается меньшей, чем скорость на подъеме.

При наличии трения падающие тела имеют ускорение, равное g, только в начальный момент движения. По мере увеличения скорости ускорение уменьшается, движение тела стремится к равномерному.



СДЕЛАЙ САМ

Как ведут себя падающие тела в реальных условиях?

Возьмите небольшой диск из пластмассы, толстого картона или фанеры. Вырежьте из обычной бумаги диск такого же диаметра. Поднимите их, держа в разных руках, на одинаковую высоту и одновременно отпустите. Тяжелый диск упадет быстрее, чем легкий. На каждый диск действует при падении одновременно две силы: сила тяжести и сила сопротивления воздуха. В начале падения равнодействующая силы тяжести и силы сопротивления воздуха будет больше у тела с большей массой и ускорение более тяжелого тела будет больше. По мере увеличения скорости тела сила сопротивления воздуха увеличивается и постепенно сравнивается по величине с силой тяжести, падающие тела начинают двигаться равномерно, но с разной скоростью (у более тяжелого тела скорость выше).
Аналогично движению падающего диска можно рассматривать движение падающего вниз парашютиста при прыжке с самолета с большой высоты.


Положите легкий бумажный диск на более тяжелый пластмассовый или фанерный, поднимите их на высоту и одновременно отпустите. В этом случае они будут падать одновременно. Здесь сопротивление воздуха действует только на тяжёлый нижний диск, а сила тяжести сообщает телам равные ускорения в независимости от их масс.


ПОЧТИ АНЕКДОТ

Парижский физик Ленорман, живший в 18 веке, взял обычные дождевые зонты, закрепил концы спиц и прыгнул с крыши дома. Затем ободренный успехом он изготовил уже специальный зонт с плетеным сиденьем и кинулся вниз с башни в Монпелье. Внизу его окружили восторженные зрители. Как называется ваш зонт? Парашют! - ответил Ленорман (буквальный перевод этого слова с французского - "против падения").


ИНТЕРЕСНО

Если Землю просверлить насквозь и бросить туда камень, что будет с камнем?
Камень будет падать, набрав посередине пути максимальную скорость, дальше полетит по инерции и достигнет противоположной стороны Земли, причем его конечная скорость будет равна начальной. Ускорение свободного падения внутри Земли пропорционально расстоянию до центра Земли. Камень будет двигаться как груз на пружинке, по закону Гука. Если начальная скорость камня равна нулю, то период колебания камня в шахте равен периоду обращения спутника вблизи поверхности Земли, независимо от того, как прорыта прямая шахта: через центр Земли или по любой хорде.

Известно, что планета Земля притягивает любое тело к своему ядру при помощи так называемого гравитационного поля . Это значит, что чем больше расстояние между телом и поверхностью нашей планеты, тем с большей воздействует на него, и тем выраженнее

На тело, падающее вертикально вниз, по-прежнему воздействует вышеупомянутая сила, благодаря действию которой тело непременно упадет вниз. Остается открытым вопрос о том, какова будет его скорость при падении? С одной стороны, на предмет оказывает влияние сопротивление воздуха, которое достаточно сильно, с другое - тело тем сильнее притягивается к Земле, чем оно от нее дальше. Первое - очевидно будет являться препятствием и уменьшать скорость, второе - придавать ускорение и увеличивать скорость. Таким образом, возникает иной вопрос о том, возможно ли именно свободное падение в земных условиях? Строго говоря, тела возможно лишь в вакууме, где отсутствуют помехи в виде сопротивления потоков воздуха. Однако в рамках современной физики свободным падением тела принято считать вертикальное движение, которое не встречает помех (сопротивлением воздуха при этом можно пренебречь).

Все дело в том, что создать условия, где на падающий предмет не воздействуют иные силы, в частности, тот же воздух, можно только искусственно. Экспериментальным путем было доказано, что скорость свободного падения тела в вакууме всегда равна одному и тому же числу вне зависимости от веса тела. Такое движение получило название равноускоренное. Впервые оно было описано знаменитым физиком и астрономом Галилео Галилеем более 4 веков назад. Актуальность таких выводов не утратила своей силы по сей день.

Как уже было сказано, свободное падение тела в рамках обыденной жизни - это условное и не совсем корректное название. По факту же скорость свободного падения любого тела неравномерна. Тело движется с ускорением, за счет чего подобное движение описывается как частный случай равноускоренного движения. Иными словами, каждую секунду скорость тела будет меняться. Имея в виду данную оговорку, можно найти скорость свободного падения тела. Если мы не придаем предмету ускорения (то есть не бросаем его, а просто опускаем с высоты), то его начальная скорость будет равно нулю: Vo=0. С каждой секундой скорость будет увеличиваться пропорционально и ускорению: gt.

Здесь важно прокомментировать ввод переменной g. Это - ускорение свободного падения. Ранее нами уже было отмечено наличие ускорения при падении тела в нормальных условиях, т.е. при наличии воздуха и при воздействии силы тяжести. Любое тело падает на Землю с ускорением, равным 9,8 м/с2, вне зависимости от его массы.

Теперь, имея в виду эту оговорку, выводим формулу, которая поможет вычислить скорость свободного падения тела:

То есть к начальной скорости (если мы придавали ее телу посредством кидания, толкания или иных манипуляций) добавляем произведение на то количество секунд, которое потребовалось телу для того, чтобы достичь поверхности. Если же начальная скорость равна нулю, то формула приобретает вид:

То есть попросту произведение ускорения свободного падения на время.

Подобным образом, зная скорость свободного падения предмета, можно вывести время его передвижения или начальную скорость.

Следует также отличать формулу для подсчета скорости поскольку в этом случае будут действовать силы, постепенно замедляющие скорость движения брошенного предмета.

В случае, рассмотренном нами, на тело действует только сила тяжести и сопротивление воздушных потоков, что, по большому счету, на изменение скорости не влияет.

Скорость падения тела в газе или жидкости стабилизируется по достижении телом скорости, при которой сила гравитационного притяжения уравновешивается силой сопротивления среды.

При движении в вязкой среде более крупных объектов, однако, начинают преобладать иные эффекты и закономерности. При достижении дождевыми каплями диаметра всего лишь в десятые доли миллиметра вокруг них начинают образовываться так называемые завихрения в результате срыва потока. Вы их, возможно, наблюдали весьма наглядно: когда машина осенью едет по дороге, засыпанной опавшей листвой, сухие листья не просто разметаются по сторонам от машины, но начинают кружиться в подобии вальса. Описываемые ими круги в точности повторяют линии вихрей фон Кармана , получивших свое название в честь инженера-физика венгерского происхождения Теодора фон Кармана (Theodore von Kármán, 1881-1963), который, эмигрировав в США и работая в Калифорнийском технологическом институте, стал одним из основоположников современной прикладной аэродинамики. Этими турбулентными вихрями обычно и обусловлено торможение — именно они вносят основной вклад в то, что машина или самолет, разогнавшись до определенной скорости, сталкиваются с резко возросшим сопротивлением воздуха и дальше ускоряться не в состоянии. Если вам доводилось на большой скорости разъезжаться на своем легковом автомобиле с тяжелым и быстрым встречным фургоном и машину начинало «водить» из стороны в сторону, знайте: вы попали в вихрь фон Кармана и познакомились с ним не понаслышке.

При свободном падении крупных тел в атмосфере завихрения начинаются практически сразу, и предельная скорость падения достигается очень быстро. Для парашютистов, например, предельная скорость составляет от 190 км/ч при максимальном сопротивлении воздуха, когда они падают плашмя, раскинув руки, до 240 км/ч при нырянии «рыбкой» или «солдатиком».

Свободное падение - это движение тела под действием только силы тяжести.

На тело, падающее в воздухе, кроме силы тяжести действует сила сопротивления воздуха, следовательно, такое движение не является свободным падением. Свободное падение - это падение тел в вакууме.

Ускорение , которое сообщает телу сила тяжести, называют ускорением свободного падения . Оно показывает, на какую величину изменяется скорость свободно падающего тела за единицу времени.

Ускорение свободного падения направлено вертикально вниз.

Галилео Галилей установил (закон Галилея ): все тела падают на поверхность Земли под действием земного притяжения при отсутствии сил сопротивления с одинаковым ускорением, т.е. ускорение свободного падения не зависит от массы тела.

Убедиться в этом можно, используя трубку Ньютона или стробоскопический метод.

Трубка Ньютона представляет собой стеклянную трубку длиной около 1 м, один конец которой запаян, а другой снабжен краном (рис. 25).

Рис.25

Поместим в трубку три разных предмета, например дробинку, пробку и птичье перо. Затем быстро перевернем трубку. Все три тела упадут на дно трубки, но в разное время: сначала дробинка, затем пробка и, наконец, перо. Но так падают тела в том случае, когда в трубке есть воздух (рис. 25, а). Стоит только воздух откачать насосом и снова перевернуть трубку, мы увидим, что все три тела упадут одновременно (рис. 25, б).

В земных условиях g зависит от географической широты местности.

Наибольшее значение оно имеет на полюсе g=9,81 м/с 2 , наименьшее - на экваторе g=9,75 м/с 2 . Причины этого:

1) суточное вращение Земли вокруг своей оси;

2) отклонение формы Земли от сферической;

3) неоднородное распределение плотности земных пород.

Ускорение свободного падения зависит от высоты h тела над поверхностью планеты. Его, если пренебречь вращением планеты, можно рассчитать по формуле:

где G - гравитационная постоянная, М - масса планеты, R - радиус планеты.

Как следует из последней формулы, с увеличением высоты подъема тела над поверхностью планеты ускорение свободного падения уменьшается. Если пренебречь вращением планеты, то на поверхности планеты радиусом R

Для его описания можно использовать формулы равноускоренного движения:

уравнение скорости:

кинематическое уравнение, описывающее свободное падение тел: ,

или в проекции на ось .

Движение тела, брошенного вертикально

Свободно падающее тело может двигаться прямолинейно или по криволинейной траектории. Это зависит от начальных условий. Рассмотрим это подробнее.

Свободное падение без начальной скорости ( =0) (рис. 26).

При выбранной системе координат движение тела описывается уравнениями: .

Из последней формулы можно найти время падения тела с высоты h:

Подставляя найденное время в формулу для скорости, получим модуль скорости тела в момент падения: .

Движение тела, брошенного вертикально вверх с начальной скоростью (рис. 27)

Рис.26 Рис.27

Движение тела описывается уравнениями:

Из уравнения скорости видно, что тело движется равнозамедленно вверх, достигает максимальной высоты, а затем движется равноускоренно вниз. Учитывая, что при y=hmax скорость и в момент достижения телом первоначального положения у=0, можно найти:

Время подъема тела на максимальную высоту;

Максимальная высота подъема тела;

Время полета тела;

Проекция скорости в момент достижения телом первоначального положения.

Движение тела, брошенного горизонтально

Если скорость направлена не вертикально, то движение тела будет криволинейным.

Рассмотрим движение тела, брошенного горизонтально с высоты h со скоростью (рис. 28). Сопротивлением воздуха будем пренебрегать. Для описания движения необходимо выбрать две оси координат - Ох и Оу. Начало отсчета координат совместим с начальным положением тела. Из рис.28 видно, что , , , .

Рис.28

Тогда движение тела опишется уравнениями:

Анализ этих формул показывает, что в горизонтальном направлении скорость тела остается неизменной, т.е. тело движется равномерно. В вертикальном направлении тело движется равноускоренно с ускорением g, т.е. так же, как тело, свободно падающее без начальной скорости. Найдем уравнение траектории. Для этого из уравнения (3) найдем время

13 безвоздушном пространстве на свободно падаю­щее тело действует ускорение свободного падения g = = 9,81 м/с 2 , сила сопротивления Q отсутствует. Поэтому скорость падения тел в безвоздушном пространстве с течением времени будет постоянно возрастать под дей­ствием ускорения свободного иадения V=gt.

При падении в воздухе на тело, кроме ускорения свободного падения, будет действовать в противополож­ном направлении сила сопротивления воздуха Q:

Когда сила тяжести тела G = mg уравновесится си­лой сопротивления Q, дальнейшего роста скорости сво­бодного падения тела происходить не будет, то есть до­стигнуто равновесие:

Это означает, что тело достигло критической равно­весной скорости падения:

Из формулы видно, что критическая скорость паде­ния тел в воздухе зависит от веса тела, коэффициента сопротивления тела С х площади сопротивления тела. Коэффициент сопротивления С х человека может изме­няться в широких пределах. Среднее его значение С х = = 0,195; максимальное значение примерно 150%, а ми­нимальное 50% от среднего.

Обычно вместо миделя (S) условно берется квадрат высоты тела - . Собственный рост каждому известен. Взять величину роста в квадрате вполне достаточно для расчета, то есть:



Максимальное значение коэффициента лобового со­противления получаем при положении тела плашмя ли­цом вниз, минимальное - при положении, близком к вер­тикальному падению вниз головой.

На рис. 54 показано изменение коэффициента сопро­тивления тела парашютиста в зависимости от его поло­жения. 0° соответствует падению тела плашмя лицом вниз, 90° соответствует падению вниз головой, 180° - плашмя вниз спиной.

Такой диапазон изменения коэффициента сопротив­ления дает следующие возможные значения равновес­ной скорости падения парашюта в воздухе нормальной плотности (то есть на наших рабочих высотах). При падении головой вниз - 58-60 м/с; при падении плаш­мя- 41-43 м/с. Например, при весе парашютиста

90 кг, росте 1,7 м, плотности 0,125 , среднем

коэффициенте сопротивления С х = 0,195 скорость паде­ния будет равна:


Если при этих условиях продолжать падение вниз головой, то равновесная скорость падения будет равна приблизительно 59 м/с.

При выполнении комплекса фигур в свободном па­дении коэффициент сопротивления колеблется около своего среднего значения. При изменении веса парашю­тиста на 10 кг скорость его падения изменяется прибли­зительно на 1 м/с, то есть на 2%.

Из всего вышеизложенного становится понятно, по­чему парашютисты перед выполнением фигур старают­ся достигать максимальной скорости падения. Следует заметить, что при падении тела в любом положении рав­новесная скорость достигается на 11 -12-й секунде. По­этому парашютисту нет смысла делать разгон дольше 12-16 с. Большого эффекта при этом не достигается, однако теряется высота, запас которой никогда не бы­вает, лишним.

Для наглядности можно привести пример: макси­мальная скорость падения при прыжке с высоты 1000 м достигается на 12-й секунде падения. При прыжке с вы-соты 2000м - на 12.5-й секунде, а при прыжке с высо-ты 4000 м- на 14-й секунде.

Последние материалы сайта