Перемещения земной коры. Движение земной коры, процессы горообразования, горные породы. Смотреть что такое "Вертикальные движения земной коры" в других словарях

31.07.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Существует несколько классификаций тектонических движений. Согласно одной из них эти движения можно подразделить на два типа: вертикальные и горизонтальные. В первом типе движений напряжения передаются в направлении, близком к радиусу Земли, во втором — по касательной к поверхности оболочек земной коры. Очень часто эти движения бывают взаимосвязаны или один тип движений порождает другой.

В разные периоды развития Земли направленность вертикальных движений может быть различной, но результирующая их составляющих направлена либо вниз, либо вверх. Движения, направленные вниз и ведущие к опусканию земной коры, именуются нисходящими, или отрицательными; движения, направленные вверх и ведущие к подъему, — восходящими, или положительными. Опускание земной коры влечет за собой перемещение береговой линии в сторону суши - трансгрессию, или наступление моря. При поднятии, когда море отступает, говорят о его регрессии.

Исходя из места проявления тектонические движения подразделяют на поверхностные, коровые и глубинные. Существует также деление тектонических движений на колебательные и дислокационные.

Колебательные тектонические движения

Колебательные, или эпейрогенические, тектонические движения (от греч. эпейрогенез — рождение материков) являются преимущественно вертикальными, обще коровы ми или глубинными. Их проявление не сопровождается резким изменением первоначального залегания горных пород. На поверхности Земли нет участков, которые бы не испытывали этого типа тектонических движений. Скорость и знак (поднятие-опускание) колебательных движений меняются и в пространстве, и во времени. В их последовательности наблюдается цикличность с интервалами от многих миллионов лет до нескольких столетий.

Колебательные движения неогена и четвертичного периода получили название новейших, или неотектонических. Амплитуда неотектонических движений может быть достаточно большой, например, в горах Тянь-Шаня она составила 12-15 км. На равнинах амплитуда неотектонических движений намного меньше, но и здесь многие формы рельефа — возвышенности и низменности, положение водоразделов и речных долин — связаны с неотектоникой.

Новейшая тектоника проявляется и в настоящее время. Скорость современных тектонических движений измеряется миллиметрами и, реже, первыми сантиметрами (в горах). Например, на Русской равнине максимальные скорости поднятия — до 10 мм в год — установлены для Донбасса и северо-востока Приднепровской возвышенности, а максимальные опускания — до 11,8 мм в год — для Печорской низменности.

Устойчивые опускания за историческое время свойственны территории Нидерландов, где человек уже много столетий борется с наступающими водами Северного моря путем создания дамб. Почти половину этой страны занимают польдеры — возделанные низменные равнины, лежащие ниже уровня Северного моря, остановленного дамбами.

Дислокационные тектонические движения

К дислокационным движениям (от лат. дислокатиос - смещение) относятся тектонические движения различной направленности, в основном внутрикоровые, сопровождающиеся тектоническими нарушениями (деформациями), т. е. изменениями первичного залегания горных пород.

Выделяют следующие виды тектонических деформаций (рис. 1):

  • деформации крупных прогибов и поднятий (вызваны радиальными движениями и выражаются в пологих поднятиях и прогибах земной коры, чаще всего большого радиуса);
  • складчатые деформации (образуются вследствие горизонтальных движений, которые не нарушают сплошности слоев, а лишь изгибают их; выражаются в виде длинных или широких, иногда коротких, быстро затухающих складок);
  • разрывные деформации (характеризуются образованием разрывов в земной коре и перемещением отдельных участков вдоль трещин).

Рис. 1. Виды тектонических деформаций: а-в — горные породы

Складки образуются в породах, обладающих некоторой пластичностью.

Простейший вид складок — это антиклиналь — выпуклая складка, в ядре которой залегают наиболее древние породы — и синклиналь — вогнутая складка с молодым ядром.

В земной коре антиклинали всегда переходят в синклинали, и поэтому эти складки всегда имеют общее крыло. В этом крыле все слои примерно одинаково наклонены к горизонту. Это моноклинальное окончание складок.

Разлом земной коры происходит в том случае, если породы потеряли пластичность (приобрели жесткость) и части слоев смешаются по плоскости разлома. При смещении вниз образуется сброс, вверх - взброс , при смешении под очень малым углом наклона к горизонту - поддвиг и надвиг. В потерявших пластичность жестких породах тектонические движения создают разрывные структуры, простейшими из которых являются горсты и грабены.

Складчатые структуры после потери пластичности слагающими их горными породами могут быть разорваны сбросами (взбросами). В результате в земной коре возникают антиклинальные и синклинальные нарушенные структуры.

В отличие от колебательных движений дислокационные движения не являются повсеместными. Они характерны для геосинклинальных областей и слабо представлены или совсем отсутствуют на платформах.

Геосинклинальные области и платформы — главнейшие тектонические структуры, находящие отчетливое выражение в современном рельефе.

Тектонические структуры — закономерно повторяющиеся в земной коре формы залегания горных пород.

Геосинклинали — подвижные линейно вытянутые области земной коры, характеризующиеся разнонаправленными тектоническими движениями высокой интенсивности, энергичными явлениями магматизма, включая вулканизм, частыми и сильными землетрясениями.

На ранней стадии развития в них наблюдаются общее погружение и накопление мощных толщ горных пород. На средней стадии , когда в геосинклиналях накапливается толща осадочно-вулканических пород мощностью 8-15 км, процессы погружения сменяются постепенным поднятием, осадочные породы подвергаются складкообразованию, а на больших глубинах — метаморфизации, по трещинам и разрывам, пронизывающим их, внедряется и застывает магма. В позднюю стадию развития на месте геосинклинали под влиянием общего поднятия поверхности возникают высокие складчатые горы, увенчанные активными вулканами; впадины заполняются континентальными отложениями, мощность которых может достигать 10 км и более.

Тектонические движения, ведущие к образованию гор, называются орогеническими (горообразовательными), а процесс горообразования - орогенезом. На протяжении геологической истории Земли наблюдался ряд эпох интенсивного складчатого горообразования (табл. 9, 10). Их называют орогеническими фазами или эпохами горообразования. Наиболее древние из них относятся к докембрийскому времени, затем следуют байкальская (конец протерозоя — начало кембрия), каледонская (кембрий, ордовик, силур, начало девона), герцинская (карбон, пермь, триас), мезозойская, альпийская (конец мезозоя — кайнозой).

Таблица 9. Распределение геоструктур различного возраста по материкам и частям света

Геоструктуры

Материки и части с пета

Северная Америка

Южная Америка

Австралия

Антарктида

Кайнозойские

Мезозойские

Герцинские

Каледонские

Байкальские

Добайкальские

Таблица 10. Типы геоструктур и их отражение в рельефе

Типы геоструктур

Формы рельефа

Мегантиклинории, антиклинории

Высокие глыбово-складчатые, иногда с альпийскими формами рельефа и вулканами, реже средние складчато-глыбовые горы

Предгорные и межгорные прогибы

незаполненные

Низкие равнины

заполненные и приподнятые

Высокие равнины, плато, плоскогорья

Срединные массивы

опущенные

Низкие равнины, впадины внутренних морей

приподнятые

Плато, плоскогорья, нагорья

Выходы на поверхность складчатого основания

Низкие, реже средние складчато-глыбовые горы с выровненными вершинами и нередко крутыми тектоническими склонами

приподнятые части

Гряды, плато, плоскогорья

опущенные части

Низкие равнины, озерные котловины, прибрежные части морей

с антеклизами

Возвышенности, плато, низкие складчато-глыбовые горы

с синеклизами

Низкие равнины, прибрежные части морей

Самые древние горные системы, существующие сейчас на Земле, сформированы в каледонскую эпоху складчатости.

С прекращением процессов поднятия высокие горы медленно, но неуклонно разрушаются, пока на их месте не образуется холмистая равнина. Гсосинклинальный цикл достаточно длителен. Он не укладывается даже в рамки одного геологического периода.

Пройдя геосинклинальный цикл развития, земная кора утолщается, становится устойчивой и жесткой, не способной к новому складкообразованию. Геосинклиналь переходит в иной качественный блок земной коры — платформу.

Тектоническими называют движения земной коры, связанные с внутренними силами в земной коре и мантии Земли. Отрасль геологии , которая изучает эти движения, а также современное строение и развитие структурных элементов земной коры называетсятектоникой .

Крупнейшими структурными элементами земной коры являются платформы, геосинклинали и океанические плиты.

Платформы – огромные относительно неподвижные, устойчивые участки земной коры. Для платформ характерно двухъярусное строение. Нижний, более древний ярус (кристаллический фундамент) сложен осадочными породами, смятыми в складки, либо магматическими породами, подвергнутыми метаморфизму. Верхний ярус (платформенный чехол) почти целиком состоит из горизонтально залегающих осадочных горных пород.

Классическими примерами платформенных областей являются Восточно-Европейская (Русская) платформа, Западно-Сибирская, Туранская и Сибирская, занимающие огромные пространства. В мире известны также Северо-Африканская, Индийская и другие платформы.

Мощность верхнего яруса платформ достигает 1,5-2,0 км и более. Участок земной коры, где верний ярус отсутствует и кристаллический фундамент выходит непосредственно на наружную поверхность, называют щитами (Балтийский, Воронежский, Украинский и др.).

В пределах платформ тектонические движения выражаются в виде медленных вертикальныз колебательных движений земной коры. Слабо развиты или совсем отсутствуют вулканизм и сейсмические движения (землятресения). Рельеф платформ имеет тесную связь с глубинным строением земной коры и выражен главным образом в виде обширных равнин (низменностей).

Геосинклинали – наиболее подвижные, линейно вытянутые участки земной коры, обрамляющие платформы. На ранних стадиях своего развития они характеризуются интенсивными погружениями, а на заключительных – импульсивными поднятиями.

Геосинклинальные области – это Альпы, Карпаты, Крым, Кавказ, Памир, Гималаи, полоса Тихоокеанского побережья и другие горно-складчатые сооружения. Для всех этих областей характерны активные тектонические движения, высокая сейсмичность и вулканизм. В этих же областях активно развиваются мощные магматические процессы с образованием эффузивных лавовых покровов и потоков и интрузивных тел (штоков и др.). В Северной Евразии наиболее подвижным и сейсмически активным регионом является Курило-Камчатская зона.

Океанические плиты – крупнейшие тектонические структуры земной коры, составляют основу дна океанов. В отличие от континентов океанические плиты изучены недостаточно, что связано со значительными трудностями получения геологической информации об их строении и составе вещества.

Различают следующие главнейшие тектонические движения земной коры:

- колебательные;

- складчатые;

- разрывные.

Колебательные тектонические движения проявляются в виде медленных неравномерных поднятий и опусканий отдельных участков земной коры. Колебательный характер их движения заключается в изменении его знака: поднятие в одни геологические эпохи сменяется опусканием в другие. Тектонические движения этого типа происходят непрерывно и повсеместно. На земной поверхности нет тектонически неподвижных участков земной коры – одни поднимаются, другие опускаются.

По времени их проявления колебательные движения подразделяются на современные (последние 5-7 тыс.лет), новейшие (неоген и четвертичный период) и движения прошлых геологических периодов.

Современные колебательные движения изучают на специальных полигонах с помощью повторных геодезических наблюдений методом высокоточного нивелирования. О более древних колебательных движениях судят по чередованию морских и континентальных отложений и ряду других признаков.

Скорость поднятия или опускания отдельных участков земной коры варьируется в широких пределах и может достигать 10-20 мм в год и более. Например, южное побережье Северного моря в Голландии опускается на 5-7 мм в год. От вторжения моря на сушу (трансгрессии) Голландию спасают дамбы высотой до 15 м, которые постоянно надстраиваются. В тоже время на близко расположенных участках в Северной Швеции в прибрежной зоне отмечаются современные поднятия земной коры до 10-12 мм в год. В этих районах часть портовых сооружений оказалась удаленной от моря вследствие его отступания от берегов (регресии).

Геодезические наблюдения, проведенные в районах Черного, Каспийского и Азовского морей, показали, что Прикаспийская низменность, восточный берег Ахзовского моря, впдины в устьях рек Терека и Кубани, северо-западный берег Черного моря опускаются со скоростью 2-4 мм в год. Как следствие, в этих районах отмечается трансгрессия, т.е. наступление моря на сушу. Наоборот, медленные поднятия испытывают участки суши на побережье Балтийского моря, а также, например, районы Курска, горняе районы Алтая, Саян, Новая земля и др. Другие участки продолжают погружаться Москва (3,7 мм/год), Санкт-Петербург (3,6 мм/год) и т.д.

Наибольшая интенсивность колебательных движений земной коры отмечается в геосинклинальных областях, а наименьшая в платформенных областях.

Геологическое значение колебательных движений огромно. Они определяют условия осадконакопления, положение границ между сушей и морем, обмеление или усиление размывающей деятельности рек. Колебательные движения, происходившие в новейшее время (неоген-четвертичный период), оказали решающее влияние на формирование современного рельефа Земли.

Колебательные (современные) движения необходимо учитывать при строительстве гидротехнических сооружений типа водохранилищ, плотин, судоходных каналов, городов у моря и т.д.

Складчатые тектонические движения. В геосинклинальных областях тектонические движения могут существенно нарушать первоначальную форму залегания горных пород. Нарушение форм первичного залегания горных пород, вызванные тектоническим движением земной коры, называют дислокациями. Их подразделяют на складчаты и разрывные.

Складчатые дислокации могут быть в форме вытянутых линейных складок или выражаться в общем наклоне слоев в одну сторону.

Антиклиналь – вытянутая линейная складка, обращенная выпуклостью вверх. В ядре (центре) антиклинали залегают более древние слои, на крыльях складки более молодые.

Синклиналь – складка, аналогичная антиклинали, но направленная выпуклостью вниз. В ядре синклинали залегают более молодые слои, чем на крыльях.

Моноклиналь – представляет собой толщу слоев горных пород, наклоненных в одну сторону под одинаковым углом.

Флексура – коленообразная складка со ступенчатым изгибом слоев.

Ориентировку слоев при моноклинальном залегании характеризуют с помощью линии простирания, линии падения и угла падения.

Разрывные тектонические движения. Приводят к нарушению сплошности горных пород и разрыву их по какой-либо поверхности. Разрывы в горных породах возникают в тех случаях, когда напряжения в земной коре превышают предел прочности горных пород.

К разрывным дислокациям относят сбросы, взбросы, надвиги, сдвиги, грабены и горсты.

Сброс – образуется в результате опускания одной части толщи относительно другой.

Взброс - образуется при поднятии одной части толщи относительно другой.

Надвиг – смещение блоков горных пород по наклонной поверхности разлома.

Сдвиг – смещение блоков горных пород в горизонтальном направлении.

Грабен – участок земной коры, ограниченный тектоническими разрывами (сбросами) и опущенный по ним относительно смежных участков.

Примером крупных грабенов могут служить впадина озера Байкал и долина р.Рейн.

Горст – приподнятый участок земной коры, ограниченный сбросами или взбросами.

Разрывные тектонические движения часто сопровождаются образованием различных тектонических трещин, для которых характерны захват ими мощных толщ горных пород, выдержанность ориентировки, наличие следов смещений и другие признаки.

Особым типом разрывных тектонических нарушений являются глубинные разломы, разделяющие земную кору на отдельные крупные блоки. Глубинные разломы имеют протяженность сотни и тысячи километров и глубину более 300 км. К зонам их развития приурочены современные интенсивные землетрясения и активная вулканическая деятельность (например разломы Курило-Камчатской зоны).

Тектонические движения, вызывающие формирование складок и разрывов, называются горообразовательными.

Значение тектонических условий для строительства. Тектонические особенности района весьма существенно влияют на выбор места расположения различных зданий и сооружений, их компоновку, условия возведения и эксплуатацию строительных объектов.

Благоприятны для строительства участки с горизонтальным ненарушенным залеганием слоев. Наличие дислокаций и развитой системы тектонических трещин существенно ухудшает инженерно-геологические условия района строительства. В частности, при строительном освоении территории, с активной тектонической деятельностью необходимо учитывать интенсивную трещиноватость и раздробленность горных пород, которая снижает их прочность и устойчивость, резкое повышение сейсмической активности в местах развития разрывных дислокаций и другие особенности.

Интенсивность колебательных движений земной коры обязательно учитывают при строительстве защитных дамб, а также линейных сооружений значительной протяженности (каналов, железных дорог и пр.).

Медленные поднятия и опускания участков земной коры играют большую роль в истории Земли: этими движениями созданы разнообразные геологические структуры, образованы главнейшие неровности земной поверхности. Возвышенности, горы несут следы создавших их медленных поднятий, крупные низменности, впадины - результат постепенных опусканий, развивавшихся в течение геологического времени.

Медленные (вековые) движения земной коры продолжаются и в современную эпоху. Они могут быть выявлены точными геодезическими, геофизическими, океанографическими и геоморфологическими методами. Изучение современных движений земной коры - одна из актуальных проблем науки о Земле, имеющая большое теоретическое и практическое значение. Сведения о медленных движениях земной коры (особенно в тектонически подвижных сейсмических областях) становятся все более необходимыми при создании опорных геодезических сетей, при проектировании крупных долговременных сооружений - портов, каналов, гидростанций, ускорителей элементарных частиц. Анализ характера современных деформаций земной поверхности дает ключ к пониманию природы сложных процессов, происходящих в верхней мантии и земной коре.

Русские естествоиспытатели давно проявляли интерес к рассматриваемому явлению. Еще М. В. Ломоносов в 1763 г. в трактате «О слоях земных» связывал многие изменения лика Земли с «нечувствительным и долговременным земной поверхности понижением и повышением».

Признаки векового поднятия или опускания земной коры наиболее отчетливо видны на побережьях морей и больших озер: в областях опускания нередко можно наблюдать затопленные постройки, леса; в областях поднятия, напротив, дно мелеет, появляются новые острова, береговая линия как бы отступает и возрастает площадь суши. По таким признакам уже в начале XIX в. было надежно установлено вековое поднятие Скандинавского полуострова (Фенноскандии) в виде огромного свода, включающего южное побережье Финского залива.

С целью установить движения земной коры в районе оз. Байкал выдающийся исследователь Сибири И. Д. Черский в 1878-1880 гг. сделал ряд засечек на прибрежных скалах. С тех пор высоты всех засечек над уровнем Байкала изменились, что позволило оценить знак и скорость движений земной коры отдельных участков побережья: по оценке В. В. Ламакина (1953), изучавшего многие годы современные движения и неотектонику этого озера, они составляют от 1,5 до 6,5 мм в год. В настоящее время вместо примитивных засечек на побережьях морей СССР установлены точные приборы (футштоки, мареографы). Систематические наблюдения с их помощью позволяют надежно оценивать изменения уровня морей и движение суши.

После разрушительного землетрясения 1887 г. в г. Верном (ныне Алма-Ата) по инициативе известного геолога И. В. Мушкетова было проведено точное нивелирование через Заилийский хребет от Алма-Аты до оз. Иссык-Куль. По мысли И. В. Мушкетова, повторные нивелирования этой трассы должны были послужить основанием для будущих определений изменений высоты гор, для изучения тектоники и сейсмичности района. Заметим, что в Японии систематическое проложение линий повторного нивелирования с целью изучения движений земной коры, приводящих к разрушительным сейсмическим толчкам, было начато лишь после катастрофического землетрясения 1891 г.

Геодезические методы изучения движений земной коры привлекли внимание советских ученых и инженеров вскоре после Великой Октябрьской социалистической революции. Повторное нивелирование на Апшеронском полуострове позволило Н. Н. Большакову (1930) выявить интенсивные смещения земной поверхности - опускания со скоростью более 3 см в год, вызванные как тектоническими процессами, так и эксплуатацией нефтяных месторождений. Сложные деформации земной поверхности, связанные с вековым опусканием земной коры и оползневыми явлениями, были изучены в конце 30-х гг. в районе Одессы. Метод повторного нивелирования был оценен как новый, весьма перспективный путь изучения движений земной коры, однако в предвоенные годы объем повторных геодезических измерений высокой точности был еще недостаточен.

Первые опыты изучения результатов повторного точного нивелирования для выявления современных движений земной коры обширных территорий были предприняты после Великой Отечественной войны. Продолжающееся развитие тектонических структур складчатой области Кавказа было установлено А. А. Изотовым (1949) по результатам повторного нивелирования трассы Махачкала - Баку. Первые же повторные нивелировки большой протяженности, проведенные на Русской платформе, показали, что и ъ тектонически «спокойных» областях платформ повсеместно продолжаются движения земной коры, связанные с развитием разнообразных тектонических структур. Результаты соответствующих исследований опубликованы Л. Н. Розановым (1949), Ю. А. Мещеряковым и М. И. Синягиной (1951).

Повышение точности и накопление материалов геодезических и океанографических наблюдений позволило сделать дальнейший шаг в изучении современных движений земной коры. Он был связан с разработкой комплексной методики их изучения, основанной на совместном использовании геодезических, океанографических и геолого-геоморфологических наблюдений. Этот новый подход позволил перейти от выявления характера современных движений земной коры на сравнительно небольших участках или по отдельным профилям к составлению сводных карт движений для больших территорий. В 1958 г. силами Центрального научно-исследовательского института геодезии, аэросъемки и картографии (ЦНИИГАиК) и Института географии АН СССР под руководством И. П. Герасимова и Ю. В. Филиппова была составлена карта современных движений для западной половины Европейской части СССР. Карта базировалась на сети повторных нивелировок общей протяженностью около 20 тыс. км. Повторные нивелировки были увязаны с футштоками на побережьях Балтийского, Черного и Азовского морей.

Составление карты позволило проследить современные движения земной коры от Скандинавского полуострова до Черного моря, так как на прилагаемой схеме отражены результаты исследований на территории СССР вместе с материалами по Фенноскандии и новыми наблюдениями ученых Польши и Болгарии. Оказалось, что поднятие Фенноскандии не затухает к югу от Финского залива, как предполагали некоторые ученые, а широкой полосой продолжается на юг, до Карпат. К востоку и к западу от этой Эстонско-Карпатской полосы современного поднятия были выявлены области опускания земной коры. Были обнаружены также самостоятельные участки современного поднятия Русской платформы, связанные со структурами Воронежского и Украинского массивов и структурой Донбасса. Скорость движений земной коры, как оказалось, составляет в среднем 2-4 мм в год, при максимальных значениях до 1 см в год. Например, район Таллина испытывает поднятие со скоростью около 2 мм в год, район Москвы понижается примерно на 3 мм в год.

Впервые современные движения земной коры были выявлены для столь обширной территории. Результаты исследований советских ученых, доложенные на конгрессах Международного геодезического и геофизического союза (МГТС) и Международного географического союза (МГС), вызвали большой интерес и, несомненно, способствовали развитию аналогичных исследований в других странах.

С 1960 г. в составе МГГС активно работает созданная по инициативе советских ученых постоянная Международная комиссия по изучению современных движений земной коры, объединяющая ученых более 30 стран Европы, Азии, Африки и Америки. В 1963 г. МГГС одобрил

международную исследовательскую программу «Современные движения земной коры», разработанную Ю. Д. Буланже и автором этих строк и поддержанную учеными многих стран на специальном симпозиуме в Лейпциге в 1962 г. Международная программа предусматривает составление сводных карт современных движений крупных территорий, в первую очередь Европы и Северной Америки.

В создании такой карты для Европы вместе с советскими учеными - инициаторами международного сотрудничества в изучении современных движений земной коры - активное участие принимают ученые социалистических стран. Для территорий Польши, Болгарии, Германской Демократической Республики, Венгрии и Чехословакии уже составлены карты движений земной коры. Задачей для советских специалистов (ЦНИИГАиК, Институт географии АН СССР) на ближайшие годы является расширение такой карты на восток и на запад. В районах Сибири, Дальнего Востока и Средней Азии характер современных движений освещается отдельными, хотя и весьма протяженными, линиями повторного нивелирования (Новосибирск - Алма-Ата, Красноводск - Ашхабад и др.).

Советские ученые (Ю. Д. Буланже, А. А. Изотов и др.) выступили инициаторами создания мировой сети специальных полигонов для наблюдения за ходом движений земной коры. Полигон - это участок, где систематически проводятся геодезические, геофизические, океанографические и геоморфологические наблюдения за ходом движений земной коры. Если составление сводных карт направлено на изучение движений земной коры в пространственном (географическом) аспекте, то работы на полигонах преследуют цель выявить закономерности изменения характера движений во времени, как бы прощупать «пульс» Земли. Пока еще почти не известно, как изменяются знак и интенсивность движений год от года, какова периодичность этих изменений. Сеть полигонов позволит, в частности, выявить связь между медленными движениями земной коры и сейсмическими толчками, приблизит нас к решению сложной задачи прогноза деформаций земной поверхности, сейсмических явлений и вулканических извержений.

В Советском Союзе уже ведутся наблюдения на нескольких полигонах, расположенных от Эстонии до Камчатки. Полигоны созданы в Крыму, в районе оз. Баскунчак, в горах Средней Азии, в районе Ашхабада и других местах. Работы Института физики Земли АН СССР, институтов академий наук союзных республик на полигонах уже позволили выявить интересные новые закономерности формирования соляных куполов, вулканов, развития сейсмоактивных структур. Наряду с изучением вертикальных движений, на полигонах ведется изучение горизонтальных смещений блоков земной коры. Значительные горизонтальные смещения обнаружены, например, в районе Ашхабада.

Большие перспективы в изучении современных движений земной коры связаны с конструированием новых, чувствительных геофизических приборов - деформографов, наклономеров. Разработанные в Советском Союзе, эти приборы дают возможность в короткие сроки и с большой точностью определять характер движений земной коры в любой точке. Успехи в повышении точности гравиметрических наблюдений позволяют считать, что со временем метод повторных измерений силы тяжести будет играть важную роль при исследовании движений земной коры. Много усовершенствований вносится также в геоморфологические методы изучения этих движений (Институт географии АН СССР). В результате достигается возможность количественного прогноза движений по сумме данных о рельефе и особенностях ландшафта. Новые методы выявления движений земной коры будут иметь важное значение для поисков полезных ископаемых, наблюдения за ходом эксплуатации месторождений нефти, газа, угля, для прогноза землетрясений и решения других научно-практических задач.

— Источник—

Развитие наук о Земле в СССР. М.: Наука, 1967

Post Views: 24

Вопрос 1. Что такое земная кора?

Земная кора - внешняя твёрдая оболочка (кора) Земли, верхняя часть литосферы.

Вопрос 2. Какие существуют виды земной коры?

Материковая кора. Она состоит из нескольких слоев. Верхний - слой осадочных горных пород. Мощность этого слоя до 10-15 км. Под ним залегает гранитный слой. Горные породы, которые его слагают, по своим физическим свойствам сходны с гранитом. Толщина этого слоя от 5 до 15 км. Под гранитным слоем располагается базальтовый слой, состоящий из базальта и горных пород, физические свойства которых напоминают базальт. Толщина этого слоя от 10 до 35 км.

Океаническая земная кора. Она отличается от материковой коры тем, что не имеет гранитного слоя или он очень тонок, поэтому толщина океанической земной коры всего лишь 6-15 км.

Вопрос 3. Чем отличаются виды земной коры друг от друга?

Виды земной коры отличаются друг от друга толщиной. Общая толщина материковой земной коры достигает 30-70 км. Толщина океанической земной коры всего лишь 6-15 км.

Вопрос 4. Почему мы не замечаем большую часть движений земной коры?

Потому что земная кора движется очень медленно, и только при трениях между плитами возникают землетрясения.

Вопрос 5. Куда и как движется твёрдая оболочка Земли?

Каждая точка земной коры движется: поднимается вверх или опускается вниз, смещается вперёд, назад, вправо или влево относительно других точек. Их совместные передвижения приводят к тому, что где-то земная кора медленно поднимается, где-то опускается.

Вопрос 6. Какие виды движения характерны для земной коры?

Медленные, или вековые, движения земной коры - это вертикальные движения поверхности Земли со скоростью до нескольких сантиметров в год, связанные с действием процессов, протекающих в её недрах.

Землетрясения связаны с разрывами и нарушениями целостности горных пород в литосфере. Зона, в которой зарождается землетрясение, называется очагом землетрясения, а район, расположенный на поверхности Земли точно над очагом, - эпицентром. В эпицентре колебания земной коры особенно сильны.

Вопрос 7. Как называется наука, изучающая движения земной коры?

Наука, занимающаяся изучением землетрясений, называется сейсмологией, от слова «сейсмос» - колебания.

Вопрос 8. Что такое сейсмограф?

Все землетрясения чётко фиксируются чувствительными приборами, которые называются сейсмографами. Сейсмограф работает на основе принципа маятника: на любые, даже самые слабые колебания земной поверхности чувствительный маятник обязательно отреагирует. Маятник качнётся, и это движение приведёт в действие перо, оставляющее след на бумажной ленте. Чем сильнее землетрясение, тем больше колебания маятника и заметнее след пера на бумаге.

Вопрос 9. Что такое очаг землетрясения?

Зона, в которой зарождается землетрясение, называется очагом землетрясения, а район, расположенный на поверхности Земли точно над очагом, - эпицентром.

Вопрос 10. Где расположен эпицентр землетрясения?

Район, расположенный на поверхности Земли точно над очагом, - эпицентром. В эпицентре колебания земной коры особенно сильны.

Вопрос 11. Чем отличаются виды движения земной коры?

Тем, что вековые движения земной коры происходят очень медленно и незаметно, а быстрые движения коры (землетрясения) – быстро и имеют разрушительные последствия.

Вопрос 12. Как можно обнаружить вековые движения земной коры?

В результате вековых движений земной коры на поверхности Земли сухопутные условия могут сменяться морскими - и наоборот. Так, например, можно обнаружить на Восточно-Европейской равнине окаменевшие раковины принадлежавшие моллюскам. Это говорит о том, что там когда-то было море, но дно поднялось и теперь там холмистая равнина.

Вопрос 13. Почему возникают землетрясения?

Землетрясения связаны с разрывами и нарушениями целостности горных пород в литосфере. Большинство землетрясений возникает в районах сейсмических поясов, самый крупный из которых - Тихоокеанский.

Вопрос 14. В чём состоит принцип работы сейсмографа?

Сейсмограф работает на основе принципа маятника: на любые, даже самые слабые колебания земной поверхности чувствительный маятник обязательно отреагирует. Маятник качнётся, и это движение приведёт в действие перо, оставляющее след на бумажной ленте. Чем сильнее землетрясение, тем больше колебания маятника и заметнее след пера на бумаге.

Вопрос 15. Какой принцип положен в основу определения силы землетрясения?

Силу землетрясений измеряют в баллах. Для этого разработана специальная 12-балльная шкала силы землетрясений. Силу землетрясения определяют по последствиям этого опасного процесса, то есть по разрушениям.

Вопрос 16. Почему вулканы чаще всего возникают на дне океанов или на их берегах?

Возникновение вулканов связано с прорывом на поверхность Земли вещества из мантии. Чаще всего это происходит там, где земная кора имеет небольшую толщину.

Вопрос 17. Используя карты атласа, определите, где чаще происходят извержения вулканов: на суше или на дне океана?

Больше всего извержений происходит на дне и берегах океанов на стыке литосферных плит. Например, вдоль Тихоокеанского побережья.

Медленные движения земной коры. Людям кажется, что поверхность Земли неподвижна. На самом деле каждый участок земной коры поднимается или опускается, смещается вправо или влево, вперед или назад. Но эти движения так медленны, что обычно мы их не замечаем. Однако ученые с помощью очень точных приборов «видят» эти движения и измеряют их скорость.

Уже древним грекам было известно, что земная поверхность испытывает поднятия и опускания. Догадывались об этом и жители Скандинавского полуострова: их древние приморские поселения через несколько веков оказались вдали от моря.

Движения земной коры в зависимости от направления делят на вертикальные и горизонтальные. Они проявляются одновременно, сопровождая друг друга.

    Горизонтальные движения земной коры - это движения, параллельные поверхности Земли.

Горизонтальные движения происходят из-за перемещения литосферных плит. Вместе с плитами перемещаются и материки. Скорость горизонтальных движений небольшая - несколько сантиметров в год. Однако они сохраняют свое направление очень долгое время, поэтому за многие миллионы лет континенты передвигаются относительно друг друга на сотни и тысячи километров (рис. 47).

Рис. 47. Изменение положения материков

Австралия и Южная Америка удаляются друг от друга со скоростью 3 см в год. Подсчитайте, на сколько километров они отодвинутся через 10 млн лет.

Горизонтальные движения играют огромную роль в создании рельефа Земли. На границах литосферных плит образуются горы (рис. 48).

Рис. 48. Образование гор: а - при столкновении литосферных плит; б - при раздвижении литосферных плит

При столкновении литосферных плит слои горных пород сминаются в складки и образуются горы суши (рис. 48, а). Там, где плиты расходятся, возникают горные хребты дна океанов. Они состоят из излившихся на дно магматических пород - базальтов (рис. 48, б).

    Вертикальные движения земной коры - это движения, перпендикулярные поверхности Земли.

Вертикальные движения поднимают или опускают отдельные участки суши и дна океанов (рис. 49). Опускающаяся суша затапливается морем, поднимающееся дно моря, наоборот, становится сушей.

Рис. 49. Медленные поднятия земной коры и увеличение площади суши на юго-западе Финляндии

Вертикальные движения, в отличие от горизонтальных, часто меняют свое направление: поднимающиеся участки могут начать опускаться, а затем вновь подниматься.

Скорость современных вертикальных движений на равнинах небольшая - до нескольких миллиметров в год. Горы могут «подрастать» на несколько сантиметров в год.

Рис. 50. Залегание горных пород: а - горизонтальное; б - складчатое (породы смяты в складки)

Движения земной коры и залегание горных пород. Движения земной коры изменяют залегание горных пород. Осадочные породы накапливаются в океанах и морях горизонтальными слоями (рис. 50, а). Однако в горах слои таких же пород смяты в складки (рис. 50, б). Породы сминаются в складки медленно, в течение миллионов лет.

Рис. 51. Смещение земной коры

  • Сброс - блок земной коры, опустившийся по разлому относительно другого блока. На земной поверхности появляется уступ.
  • Горст - поднятый участок земной коры, ограниченный разломами. Горсты образуют горные хребты с плоскими вершинами.
  • Грабен - опущенный участок земной коры, ограниченный разломами. Впадины грабенов часто служат котловинами озер.

Подсчитайте, какую высоту могли бы приобрести горы через миллион лет, если бы они не разрушались, а поднятие происходило бы со скоростью 1 см в год.

Вертикальные движения, как и горизонтальные, формируют рельеф: от них зависят очертания морей и континентов, высота отдельных участков суши и глубина морских впадин.

Толщи горных пород могут быть не только смяты в складки. На снимках из космоса видно, что Земля разбита на большие и маленькие участки-блоки густой сетью разломов (трещин). Эти блоки смещаются относительно друг друга, образуя разные формы рельефа (рис. 51).

Вопросы и задания

  1. Какие формы рельефа могут образоваться в результате горизонтальных движений земной коры?
  2. В результате каких движений земной коры изменяются очертания континентов?
  3. Каково первичное залегание осадочных горных пород? Как оно может измениться?

Последние материалы сайта